Sakschewski, B. et al. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob. Change Biol. 21, 2711–2725 (2015).
Google Scholar
Berzaghi, F. et al. Towards a new generation of trait-flexible vegetation models. Trends Ecol. Evol. 35, 191–205 (2020).
Google Scholar
Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).
Google Scholar
Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2021).
Google Scholar
van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).
Google Scholar
Moreno Martínez, A. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 218, 69–88 (2018).
Google Scholar
Pérez-Harguindeguy, N. et al. New handbook for standardized measurment of plant functional traits worldwide. Aust. J. Bot. 23, 167–234 (2013).
Google Scholar
Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).
Google Scholar
Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
Google Scholar
Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).
Google Scholar
Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).
Google Scholar
Boonman, C. C. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 29, 1034–1051 (2020).
Google Scholar
Madani, N. et al. Future global productivity will be affected by plant trait response to climate. Sci. Rep. 8, 2870 (2018).
Vallicrosa, H. et al. Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N:P). Glob. Ecol. Biogeogr. 31, 861–871 (2022).
Google Scholar
Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).
Google Scholar
Schiller, C. et al. Deep learning and citizen science enable automated plant trait predictions from photographs. Sci. Rep. 11, 16395 (2021).
Aguirre-Gutiérrez, J. et al. Pantropical modelling of canopy functional traits using sentinel-2 remote sensing data. Remote Sens. Environ. 252, 112–122 (2021).
Google Scholar
Homolova, L. et al. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 15, 1–16 (2013).
Google Scholar
Van Cleemput, E. et al. The functional characterization of grass-and-shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables. Remote Sens. Environ. 209, 747–763 (2018).
Google Scholar
Kattenborn, T., Fassnacht, F. E. & Schmidtlein, S. Differentiating plant functional types using reflectance: which traits make the difference? Remote Sens. Ecol. Conserv. 5, 5–19 (2019).
Google Scholar
Hauser, L. T. et al. Explaining discrepancies between spectral and in-situ plant diversity in multispectral satellite earth observation. Remote Sens. Environ. 265, 112684 (2021).
Google Scholar
Wäldchen, J. & Mäder, P. Plant species identification using computer vision techniques: a systematic literature review. Arch. Comput. Methods Eng. 25, 507–543 (2018).
Google Scholar
Jones, H. G. What plant is that? Tests of automated image recognition apps for plant identification on plants from the British flora. AoB Plants 12, plaa052 (2020).
Google Scholar
Hampton, S. E. et al. Big data and the future of ecology. Front. Ecol. Environ. 11, 156–162 (2013).
Google Scholar
WÜest, R. O. et al. Macroecology in the age of big data—where to go from here? J. Biogeogr. 47, 1–12 (2020).
Google Scholar
Mäder, P. et al. The Flora Incognita app—interactive plant species identification. Methods Ecol. Evol. 12, 1335–1342 (2021).
Google Scholar
Di Cecco, G. J. et al. Observing the observers: how participants contribute data to iNaturalist and implications for biodiversity science. BioScience 71, 1179–1188 (2021).
Google Scholar
Mahecha, M. D. et al. Crowd-sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography 44, 1131–1142 (2021).
Google Scholar
Botella, C. et al. Jointly estimating spatial sampling effort and habitat suitability for multiple species from opportunistic presence-only data. Methods Ecol. Evol. 12, 933–945 (2021).
Google Scholar
iNaturalist Research-Grade Observations (GBIF, accessed 5 January 2022); https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. BioScience 71, 55–63 (2020).
Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Ann. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).
Google Scholar
Kosmala, M. et al. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016).
Google Scholar
Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Sci. Rep. 6, 33051 (2016).
Google Scholar
Bowler, D.E. et al. Temporal trends in the spatial bias of species occurrence records. Ecography 2022, e06219 (2022). https://doi.org/10.1111/ecog.06219
GBIF Occurrence Download (GBIF, 4 January 2022); https://doi.org/10.15468/dl.34tjre
Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. journal of vegetation science. J. Veg. Sci. 30, 161–186 (2019).
Google Scholar
Sabatini, F. et al. sPlotOpen—an environmentally balanced, open access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).
Google Scholar
Whittaker, R.H. et al. Communities and Ecosystems (Macmillan/Collier Macmillan, 1970).
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
Google Scholar
Joswig, J., Wirth, C. & Schuman, M. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2022).
Google Scholar
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
Google Scholar
Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).
Google Scholar
Meyer, H. & Pebesma, E. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Methods Ecol. Evol. 12, 1620–1633 (2021).
Google Scholar
Schrodt, F. et al. Bhpmf—a hierarchical Bayesian approach to gap filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).
Google Scholar
Kuppler, J. et al. Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Glob. Ecol. Biogeogr. 29, 992–1007 (2020).
Google Scholar
Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).
Google Scholar
Taubert, F. et al. Confronting an individual-based simulation model with empirical community patterns of grasslands. PLoS ONE 15, e0236546 (2020).
Roger, E. & Klistorner, S. (2016) Bioblitzes help science communicators engage local communities in environmental research. J. Sci. Commun. https://doi.org/10.22323/2.15030206 (2016).
Legendre, P. & Legendre, L. Numerical Ecology 3rd edn (Elsevier, 2012).
Warton, D. I. et al. Smatr 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol 3, 257–259 (2012).
Google Scholar
Wolf, S. et al. iNaturalist_traits: iNaturalist trait maps version 1 (January 5, 2022) Zenodo https://doi.org/10.5281/zenodo.6671891 (2022).
Source: Ecology - nature.com