in

Climate change impacts the vertical structure of marine ecosystem thermal ranges

  • Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).

    CAS 
    Article 

    Google Scholar 

  • Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009).

    Google Scholar 

  • Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article 

    Google Scholar 

  • García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    Article 

    Google Scholar 

  • Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    CAS 
    Article 

    Google Scholar 

  • Hughes, N. F. & Grand, T. C. Physiological ecology meets the ideal-free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ. Biol. Fishes 59, 285–298 (2000).

    Article 

    Google Scholar 

  • Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    CAS 
    Article 

    Google Scholar 

  • Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).

    Article 

    Google Scholar 

  • Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).

    Article 

    Google Scholar 

  • Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).

    Article 

    Google Scholar 

  • Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS 
    Article 

    Google Scholar 

  • Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).

    Article 

    Google Scholar 

  • Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    CAS 
    Article 

    Google Scholar 

  • Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).

    CAS 
    Article 

    Google Scholar 

  • Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    CAS 
    Article 

    Google Scholar 

  • Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article 

    Google Scholar 

  • Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).

    Article 

    Google Scholar 

  • Lotterhos, K. E., Láruson, Á. J. & Jiang, L.-Q. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 11, 15535 (2021).

    CAS 
    Article 

    Google Scholar 

  • Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).

    CAS 
    Article 

    Google Scholar 

  • Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).

    Article 

    Google Scholar 

  • Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of Earth system processes in present‐day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).

    Article 

    Google Scholar 

  • Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).

    CAS 
    Article 

    Google Scholar 

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar 

  • Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).

    Article 

    Google Scholar 

  • Sutton, T. T. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish. Biol. 83, 1508–1527 (2013).

    CAS 
    Article 

    Google Scholar 

  • Richter, I. Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIREs Clim. Change 6, 345–358 (2015).

    Article 

    Google Scholar 

  • Pozo Buil, M. et al. A dynamically downscaled ensemble of future projections for the California Current System. Front. Mar. Sci. 8, 612874 (2021).

    Article 

    Google Scholar 

  • Leonard, M. et al. A compound event framework for understanding extreme impacts. WIREs Clim. Change 5, 113–128 (2014).

    Article 

    Google Scholar 

  • Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).

    CAS 
    Article 

    Google Scholar 

  • Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article 

    Google Scholar 

  • Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).

    CAS 
    Article 

    Google Scholar 

  • Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).

    Article 

    Google Scholar 

  • Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    CAS 
    Article 

    Google Scholar 

  • Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).

    CAS 
    Article 

    Google Scholar 

  • Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).

    Article 
    CAS 

    Google Scholar 

  • Silvy, Y., Guilyardi, E., Sallée, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).

    CAS 
    Article 

    Google Scholar 

  • Cheng, L., Zheng, F. & Zhu, J. Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep. 5, 14346 (2015).

    CAS 
    Article 

    Google Scholar 

  • Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).

    CAS 
    Article 

    Google Scholar 

  • Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).

    Article 
    CAS 

    Google Scholar 

  • Oliver, E. C. J. et al. Marine Heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).

    Article 

    Google Scholar 

  • Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    CAS 
    Article 

    Google Scholar 

  • Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).

    CAS 
    Article 

    Google Scholar 

  • Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).

    Article 

    Google Scholar 

  • IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  • Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B280, 20121890 (2013).

    Article 

    Google Scholar 

  • Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577.e2 (2020).

    CAS 
    Article 

    Google Scholar 

  • Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).

    Article 

    Google Scholar 

  • Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

    Article 

    Google Scholar 

  • Thatje, S. Climate warming affects the depth distribution of marine ectotherms. Mar. Ecol. Prog. Ser. 660, 233–240 (2021).

    Article 

    Google Scholar 

  • Manuel, S. A., Coates, K. A., Kenworthy, W. J. & Fourqurean, J. W. Tropical species at the northern limit of their range: composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Mar. Environ. Res. 89, 63–75 (2013).

    CAS 
    Article 

    Google Scholar 

  • Peck, L. S., Webb, K. E. & Bailey, D. M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).

    Article 

    Google Scholar 

  • Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 217, 16–22 (2014).

    Article 

    Google Scholar 

  • Walsh, J. E. Climate of the Arctic marine environment. Ecol. Appl. 18, S3–S22 (2008).

    Article 

    Google Scholar 

  • Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H.-O. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Change Biol. 20, 3059–3067 (2014).

    Article 

    Google Scholar 

  • Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    Article 

    Google Scholar 

  • Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos. Trans. R. Soc. B 362, 2233–2258 (2007).

    Article 
    CAS 

    Google Scholar 

  • Qu, Y.-F. & Wiens, J. J. Higher temperatures lower rates of physiological and niche evolution. Proc. R. Soc. B 287, 20200823 (2020).

    Article 

    Google Scholar 

  • Cohen, D.M., Inada, T., Iwamoto, T. and Scialabba, N. FAO Species Catalogue, Vol. 10. Gadiform Fishes of the World (Order Gadiformes) (FAO, 1990).

  • Strand, E. & Huse, G. Vertical migration in adult Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 64, 1747–1760 (2007).

    Article 

    Google Scholar 

  • Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    CAS 
    Article 

    Google Scholar 

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article 

    Google Scholar 

  • Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).

    CAS 
    Article 

    Google Scholar 

  • Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614 (2009).

    CAS 
    Article 

    Google Scholar 

  • Bijma, J., Pörtner, H.-O., Yesson, C. & Rogers, A. D. Climate change and the oceans—what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).

    CAS 
    Article 

    Google Scholar 

  • Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    CAS 
    Article 

    Google Scholar 

  • Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).

    CAS 
    Article 

    Google Scholar 

  • Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).

    CAS 
    Article 

    Google Scholar 

  • Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).

    CAS 
    Article 

    Google Scholar 

  • Madec, G. et al. NEMO ocean engine. Zenodo https://www.earth-prints.org/handle/2122/13309 (2017).

  • Mathiot, P., Jenkins, A., Harris, C. & Madec, G. Explicit representation and parametrised impacts of under ice shelf seas in the z– coordinate ocean model NEMO 3.6. Geosci. Model Dev. 10, 2849–2874 (2017).

    Article 

    Google Scholar 

  • Dai, A. & Bloecker, C. E. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 52, 289–306 (2019).

    Article 

    Google Scholar 

  • Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).

    Article 

    Google Scholar 

  • Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).

    CAS 
    Article 

    Google Scholar 

  • Welch, B. L. The generalization of Student’s’ problem when several different population variances are involved. Biometrika 34, 28 (1947).

    CAS 

    Google Scholar 

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 

    Google Scholar 

  • Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).

    Article 

    Google Scholar 

  • Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).

    Article 

    Google Scholar 

  • Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS 
    Article 

    Google Scholar 

  • Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).

    CAS 
    Article 

    Google Scholar 

  • Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    CAS 
    Article 

    Google Scholar 

  • Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Identifying driving factors of urban land expansion using Google Earth Engine and machine-learning approaches in Mentougou District, China

    Processing waste biomass to reduce airborne emissions