in

Climate change induced habitat expansion of nutria (Myocastor coypus) in South Korea

[adace-ad id="91168"]
  • Kim, I. R. et al. Genetic diversity and population structure of nutria (Myocastor coypus) in South Korea. Animals 9, 1164. https://doi.org/10.3390/ani9121164 (2019).

    Article 
    PubMed Central 

    Google Scholar 

  • GISD. Of the World’s Worst Invasive Alien Species. Global Invasive Species Database. http://www.iucngisd.org/gisd/100_worst.php. 100, (2021).

  • Hong, S., Do, Y., Kim, J. Y., Kim, D. & Joo, G. Distribution, spread and habitat preferences of nutria (Myocastor coypus) invading the lower Nakdong River, South Korea. Biol. Invas. 17, 1485–1496. https://doi.org/10.1007/s10530-014-0809-8 (2015).

    Article 

    Google Scholar 

  • Ojeda, R., Bidau, C. & Emmons, L. Myocastor coypus (errata version published in 2017). The IUCN Red List Threat. Species (2016): e.T14085A121734257.

  • Tsiamis, K. et al. Baseline Distribution of Invasive Alien Species of Union Concern (Publications Office of the European Union, 2017).

    Google Scholar 

  • Carter, J. & Leonard, B. P. A review of the literature on the worldwide distribution, spread of, and efforts to eradicate the coypu (Myocastor coypus). Wildl. Soc. Bull. 30, 162–175 (2002).

    Google Scholar 

  • Kim, Y. C. et al. Distribution and management of nutria (Myocastor coypus) populations in South Korea. Sustainability 11, 4169. https://doi.org/10.3390/su11154169 (2019).

    Article 

    Google Scholar 

  • Park, J. H. et al. The first case of Capillaria hepatica infection in a nutria (Myocastor coypus) in Korea. Korean J. Parasitol. 52, 527–529. https://doi.org/10.3347/kjp.2014.52.5.527 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fratini, F., Turchi, B. E., Ebani, V. V. & Bertelloni, F. The presence of Leptospira in coypus (Myocastor coypus) and rats (Rattus norvegicus) living in a protected wetland in Tuscany (Italy). Vet. Arh. 85, 407–414 (2015).

    Google Scholar 

  • Lee, D. H., Kil, J. H. & Kim, D. E. The study on the distribution and inhabiting status of nutria (Myocastor coypus) in Korea. Korean J. Environ. Ecol. 27, 316–326 (2013).

    CAS 

    Google Scholar 

  • Guichón, M. L., Doncaster, C. P. & Cassini, M. H. Population structure of coypus (Myocastor coypus) in their region of origin and comparison with introduced populations. J. Zool. 261, 265–272. https://doi.org/10.1017/S0952836903004187 (2003).

    Article 

    Google Scholar 

  • Bertolino, S., Perrone, A. & Gola, L. Effectiveness of coypu control in small Italian Wetland areas. Wildl. Soc. Bull. 33, 714–720. https://doi.org/10.2193/0091-7648(2005)33[714:EOCCIS]2.0.CO;2 (2005).

    Article 

    Google Scholar 

  • Schertler, A. et al. The potential current distribution of the coypu (Myocastor coypus) in Europe and climate change induced shifts in the near future. NeoBiota 58, 129–160. https://doi.org/10.3897/neobiota.58.33118 (2020).

    Article 

    Google Scholar 

  • Hilts, D. J., Belitz, M. W., Gehring, T. M., Pangle, K. L. & Uzarski, D. G. Climate change and nutria range expansion in the Eastern United States. J. Wild. Manaag. 83, 591–598. https://doi.org/10.1002/jwmg.21629’ (2019).

    Article 

    Google Scholar 

  • Jarnevich, C. et al. Evaluating simplistic methods to understand current distributions and forecast distribution changes under climate change scenarios: An example with coypu (Myocastor coypus). NeoBiota 32, 107–125. https://doi.org/10.3897/neobiota.32.8884 (2017).

    Article 

    Google Scholar 

  • Korean Metrological Administration, (2020). Korean Climate Change Assessment Report 2020.

  • Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292. https://doi.org/10.1111/geb.12268 (2015).

    Article 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).

    Article 

    Google Scholar 

  • Hong, S., Cowan, P., Do, Y. & Gim, J. S. Seasonal feeding habits of coypu (Myocastor coypus) in South Korea. Hystrix 27, 123–128 (2016).

    Google Scholar 

  • Kim, H. S., Kong, J. Y., Kim, J. H., Yeon, S. C. & Hong, I. H. A Case of Fascioliasis in A Wild Nutria, Myocastor coypus Republic of Korea. Korean J. Parasitol. 56, 375–378. https://doi.org/10.3347/kjp.2018.56.4.375 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Do, Y., Kim, J. Y., Im, R. Y. & Kim, S. B. Spatial distribution and social characteristics for wetlands in Gyeongsangnam-do Province. Korean J. Limnol. 45, 252–260 (2012).

    Google Scholar 

  • IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2013).

  • Sheffels, T. R. Status of Nutria (Myocastor coypus) Populations in the Pacific Northwest and Development of Associated Control and Management Strategies, with an Emphasis on Metropolitan Habitats, PhD Thesis (Portland State Univ., 2013).

  • Doncaster, C. P. & MlCOL, T. Annual cycle of a coypu (Myocastor coypus) population: Male and female strategies. J. Zool. 217, 227–240. https://doi.org/10.1111/j.1469-7998.1989.tb02484.x (1989).

    Article 

    Google Scholar 

  • Reggiani, G., Boitani, L. & Stefano, R. Population dynamics and regulation in the coypu Myocastor coypus in Central Italy. Ecography 18, 138–146. https://doi.org/10.1111/j.1600-0587.1995.tb00334.x (1995).

    Article 

    Google Scholar 

  • Cha, Y., Cho, K. H., Lee, H., Kang, T. & Kim, J. H. The relative importance of water temperature and residence time in predicting cyanobacteria abundance in regulated rivers. Water Res. 124, 11–19. https://doi.org/10.1016/j.watres.2017.07.040 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22, 534–543. https://doi.org/10.1111/j.1523-1739.2008.00951.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • Pereira, A. D. et al. Modeling the geographic distribution of Myocastor coypus (Mammalia, Rodentia) in Brazil: Establishing priority areas for monitoring and an alert about the risk of invasion. Stud. Neotrop. Fauna Environ. 55, 139–148. https://doi.org/10.1080/01650521.2019.1707419 (2020).

    Article 

    Google Scholar 

  • Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x (2003).

    Article 

    Google Scholar 

  • Rogers, C. E. & McCarty, J. P. Climate change and ecosystems of the mid-atlantic region. Clim. Res. 14, 235–244. https://doi.org/10.3354/cr014235 (2000).

    Article 

    Google Scholar 

  • Adhikari, P. et al. Potential impact of climate change on plant invasion in the Republic of Korea. J. Ecol. Environ. 43, 36. https://doi.org/10.1186/s41610-019-0134-3 (2019).

    Article 

    Google Scholar 

  • Welsch, D. J., Smart, D. L., Boyer, J. N. & Minkin, P. Forested Wetlands: Functions, Benefits and the Use of Best Management Practices (US Dept of the Interior Fish and Wildlife Service, 2021).

    Google Scholar 

  • Borgnia, M., Galante, M. L. & Cassini, M. H. Diet of the coypu (nutria, Myocastor coypus) in agro-systems of Argentinean pampas. J. Wildl. Manag. 64, 354–361. https://doi.org/10.2307/3803233 (2000).

    Article 

    Google Scholar 

  • Colares, I. G., Oliveira, R. N. V., Liveira, R. M. & Colares, E. P. Feeding habits of coypu (Myocastor coypus Molina 1978) in the wetlands of the Southern region of Brazil. An. Acad. Bras. Cienc. 82, 671–678. https://doi.org/10.1590/s0001-37652010000300015 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Corriale, M. J., Arias, S. M., Bó, R. F. & Porini, G. Habitat-use patterns of the coypu (Myocastor coypus) in an urban wetland of its original distribution. Acta Theriol. 51, 295–302. https://doi.org/10.1007/BF03192681 (2006).

    Article 

    Google Scholar 

  • Linscombe, G., Kinler, N. & Wright, V. Nutria population density and vegetative changes in brackish marsh in coastal Louisiana. In Worldwide Furbearer Conference Proceedings (eds Chapman, J. A. & Pursley, D.) 129–141 (Worlwide Furbearer Conference Inc, 1981).

    Google Scholar 

  • Aliev, F. Contribution to the study of nutria migrations (Myocastor coypus). Saugetierkd. Mitt. 16, 301–303 (1968).

    Google Scholar 

  • Farashi, A. & Najafabadi, M. S. A model to predict dispersion of the alien nutria, Myocastor coypus Molina, 1782 (Rodentia) Northern Iran. Acta Zool. Bulg. 69, 65–70 (2017).

    Google Scholar 

  • Vilà, M. et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 8, 135–144. https://doi.org/10.1890/080083 (2010).

    Article 

    Google Scholar 

  • Adhikari, P. et al. Seasonal and altitudinal variation in roe deer (Capreolus pygargus tianschanicus) diet on Jeju Island, South Korea. J. Asia Pac. Biodivers. 9, 422–428. https://doi.org/10.1016/j.japb.2016.09.001 (2016).

    Article 

    Google Scholar 

  • Koo, K. A., Kong, W. S., Nibbelink, N. P., Hopkinson, C. S. & Lee, J. H. Potential effects of climate change on the distribution of cold-tolerant evergreen broadleaved woody plants in the Korean Peninsula. PLoS ONE 10, e0134043. https://doi.org/10.1371/journal.pone.0134043 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Institute of Biological Research. Korean Red List of Threatened Species 2nd edn. (Ministry of Environement of Korea, 2014).

    Google Scholar 

  • Kil, J. et al. Monitoring of Invasive Alien Species Designated by the Wildlife Protection Act (VII) (Natl Inst. of Environmental Research, 2013).

    Google Scholar 

  • Busby, J. R. In Bioclim, a Bioclimatic Analysis and Prediction System in Nature Conservation: Cost Effective Biological Surveys and Data Analysis (eds Margules, C. R. & Austin, M. P.) 64–68 (CSIRO, 1991).

    Google Scholar 

  • Lee I. H., Park S. H., Kang, H. S. & Cho C. H. Regional climate projections using the HadGEM3-RA in Proceedings of the 3rd International Conference on Earth System Modelling; Hamburg, Germany. 17–21 September 2012. (2012).

  • Robert, J. H., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’ version 1.3. , https://cran.rproject.org/web/packages/dismo.pdf (2021).

  • Jeon, J. Y., Adhikari, P. & Seo, C. Impact of climate change on potential dispersal of Paeonia obovata (Paeoniaceae), a critically endangered medicinal plant of South Korea. Ecol. Environ. Conserv. 26, S145–S155 (2020).

    Google Scholar 

  • Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).

    Article 

    Google Scholar 

  • Shin, M. S., Seo, C., Lee, M. & Kim, J. Y. Prediction of potential species richness of plants adaptable to climate change in the Korean Peninsula. J. Environ. Impact Assess. 27, 562–581 (2018).

    Google Scholar 

  • Adhikari, P. et al. Northward range expansion of southern butterflies according to climate change in South Korea. KSCCR 11, 643–656. https://doi.org/10.15531/KSCCR.2020.11.6.643 (2020).

    Article 

    Google Scholar 

  • Song, C. et al. Estimation of future land cover considering shared socioeconomic pathways using scenario generators. KSCCR 9, 223–234. https://doi.org/10.15531/KSCCR.2018.9.3.223 (2018).

    Article 

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).

    Article 

    Google Scholar 

  • Dukes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14, 135–139. https://doi.org/10.1016/s0169-5347(98)01554-7 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Thuiller, W., Georges, D., Gueguen, M., Engler, R. & Breiner, F. Package ‘biomod2’: Ensemble Platform for Species Distribution Modeling, version 3.5.1. https://cran.r-project.org/web/packages/biomod2/biomod2.pdf (2021).

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x (2006).

    Article 

    Google Scholar 

  • Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).

    Article 

    Google Scholar 

  • Brown, J. L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700. https://doi.org/10.1111/2041-210X.12200 (2014).

    Article 

    Google Scholar 

  • Veloz, S. D. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence–only niche models. J. Biogeogr. 36, 2290–2299. https://doi.org/10.1111/j.1365-2699.2009.02174.x (2009).

    Article 

    Google Scholar 

  • Adhikari, P., Lee, Y. H., Park, Y.-S. & Hong, S. H. Assessment of the spatial invasion risk of intentionally introduced alien plant species (IIAPS) under environmental change in South Korea. Biology 10, 1169 (2021).

    Article 

    Google Scholar 

  • Hong, S. H., Lee, Y. H., Lee, G., Lee, D. H. & Adhikari, P. Predicting impacts of climate change on northward range expansion of invasive weeds in South Korea. Plants 10, 1604. https://doi.org/10.3390/plants10081604 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearsons, R. G. Species distribution modeling for conservation educators and practitioners. Lessons Conserv. 3, 54–58 (2010).

    Google Scholar 

  • Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x (2006).

    Article 

    Google Scholar 

  • Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357. https://doi.org/10.1111/j.1466-822X.2005.00162.x (2005).

    Article 

    Google Scholar 

  • Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Global. Ecol. Biogeography. 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x (2008).

    Article 

    Google Scholar 

  • Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).

    MathSciNet 
    CAS 
    Article 
    ADS 

    Google Scholar 

  • Baldwin, R. Use of maximum entropy modeling in wildlife research. Entropy 11, 854–866. https://doi.org/10.3390/e11040854 (2009).

    Article 
    ADS 

    Google Scholar 

  • Adhikari, P. et al. Potential impact of climate change on the species richness of subalpine plant species in the mountain national parks of South Korea. J. Ecol. Environ. 42, 36. https://doi.org/10.1186/s41610-018-0095-y (2018).

    Article 

    Google Scholar 

  • Hijmans, R. J. et al. Package ‘raster’ v 3.5: geographical data analysis and modeling. https://cran.r-project.org/web/packages/raster/raster.pdf, (2021).


  • Source: Ecology - nature.com

    Catabolic protein degradation in marine sediments confined to distinct archaea

    Study reveals chemical link between wildfire smoke and ozone depletion