Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
Google Scholar
Diamond, S. E. Contemporary climate‐driven range shifts: putting evolution back on the table. Functional Ecol. 32, 1652–1665 (2018).
Google Scholar
Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
Google Scholar
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Google Scholar
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
Google Scholar
Nelson, E. J. et al. Climate change’s impact on key ecosystem services and the human well‐being they support in the US. Front. Ecol. Environ. 11, 483–893 (2013).
Google Scholar
Prather, C. M. et al. Invertebrates, ecosystem services and climate change. Biol. Rev. 88, 327–348 (2013).
Google Scholar
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Google Scholar
Ripple, W. J. et al. World scientists’ warning of a climate emergency 2021. BioScience 71, 894–898 (2021).
Google Scholar
Gallagher, R. V., Hughes, L. & Leishman, M. R. Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36, 531–540 (2013).
Google Scholar
Saladin, B. et al. Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nat. Commun. 11, 1–8 (2020).
Google Scholar
Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).
Google Scholar
Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).
Google Scholar
Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).
Google Scholar
Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792–812 (2011).
Google Scholar
Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
Google Scholar
Wang, S. & Loreau, M. Ecosystem stability in space: α, β and γ variability. Ecol. Lett. 17, 891–901 (2014).
Google Scholar
Cardoso, P. et al. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. J. Biogeogr. 41, 749–761 (2014).
Google Scholar
Hassall, C. Odonata as candidate macroecological barometers for global climate change. Freshwater Sci. 34, 1040–1049 (2015).
Google Scholar
Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Global Ecol. Biogeogr. 22, 403–409 (2013).
Google Scholar
Moore, M. P. et al. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc. Natl Acad. Sci. 118, https://doi.org/10.1073/pnas.2101458118 (2021).
Castillo-Pérez, E. U., Suárez-Tovar, C. M., González-Tokman, D., Schondube, J. E. & Córdoba-Aguilar, A. Insect thermal limits in warm and perturbed habitats: Dragonflies and damselflies as study cases. J. Thermal Biol. 103, 103164 (2022).
Google Scholar
May, M. L. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects 10, 62 (2019).
Google Scholar
Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Global Change biology 11, 502–506 (2005).
Google Scholar
Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biol. 12, 450–455 (2006).
Heino, J., Virkkala, R. & Toivonen, H. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84, 39–54 (2009).
Google Scholar
Mustonen, K. R. et al. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages. Global Change Biol. 24, 2434–2446 (2018).
Google Scholar
Cadotte, M. W. & Tucker, C. M. Difficult decisions: strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).
Google Scholar
Wong, J. S. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).
Google Scholar
Arnan, X., Cerdá, X. & Retana, J. Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 40, 448–457 (2017).
Google Scholar
Strecker, A. L., Olden, J. D., Whittier, J. B. & Paukert, C. P. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol. Appl. 21, 3002–3013 (2011).
Google Scholar
Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 1–3 (2019).
Google Scholar
Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
Google Scholar
Ovaskainen, O., Rybicki, J. & Abrego, N. What can observational data reveal about metacommunity processes? Ecography 42, 1877–1886 (2019).
Google Scholar
Thomas, C. D. The development of Anthropocene biotas. Philos. Trans. R. Soc. B 375, 20190113 (2020).
Google Scholar
Krosby, M. et al. Climate-induced range overlap among closely related species. Nat. Clim. Change 5, 883–886 (2015).
Google Scholar
Sánchez-Guillén, R. A., Wellenreuther, M., Cordero-Rivera, A. & Hansson, B. Introgression and rapid species turnover in sympatric damselflies. BMC Evol. Biol. 11, 1–17 (2011).
Google Scholar
Bybee, S. et al. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Front. Zool. 13, 1–20 (2016).
Google Scholar
Tobias, N. & Monika, W. Does taxonomic homogenization imply functional homogenization in temperate forest herb layer communities? Plant Ecol. 213, 431–443 (2012).
Google Scholar
Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2013).
Google Scholar
Ball-Damerow, J. E., M’Gonigle, L. K. & Resh, V. H. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodiversity Conserv. 23, 2107–2126 (2014).
Google Scholar
McGoff, E., Solimini, A. G., Pusch, M. T., Jurca, T. & Sandin, L. Does lake habitat alteration and land-use pressure homogenize European littoral macroinvertebrate communities? J. Appl. Ecol. 50, 1010–1018 (2013).
Google Scholar
Vilenica, M., Kerovec, M., Pozojević, I. & Mihaljević, Z. Odonata assemblages in anthropogenically impacted lotic habitats. J. Limnol. 80, 1968 (2021).
Mammola, S. et al. Challenges and opportunities of species distribution modelling of terrestrial arthropod predators. Diversity Distrib. 27, 2596–2614 (2021).
Google Scholar
Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecol. Biogeogr. 27, 245–256 (2018).
Google Scholar
Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018). .
Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).
Google Scholar
Miller, J. A. & Holloway, P. Incorporating movement in species distribution models. Progr. Phys. Geogr. 39, 837–849 (2015).
Google Scholar
Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. 115, 11982–11987 (2018).
Google Scholar
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Google Scholar
Pinkert, S. et al. Evolutionary processes, dispersal limitation and climatic history shape current diversity patterns of European dragonflies. Ecography 41, 795–804 (2018).
Google Scholar
Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 1–9 (2014).
Google Scholar
Buckley, L. B. & Kingsolver, J. G. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Ann. Rev. Ecol. Evol. Syst. 43, 205–226 (2012).
Google Scholar
Tikhonov, G. et al. Joint species distribution modelling with the R‐package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).
Google Scholar
Corbet, P. S. The life-history of the emperor dragonfly Anax imperator Leach (Odonata: Aeshnidae). J. Animal Ecol. 1–69. https://doi.org/10.2307/1781 (1957).
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8(9), 993–1009 (2005).
Google Scholar
Peterson, A. T. et al. Ecological niches and geographic distributions (MPB-49) (Princeton University Press, 2011).
Franklin, J. Mapping species distributions: spatial inference and prediction (Cambridge University Press, 2010).
Ryo, M. et al. Explainable artificial intelligence enhances the ecological interpretability of black‐box species distribution models. Ecography 44(2), 199–205 (2021).
Google Scholar
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
Google Scholar
Adams, M. P. et al. Prioritizing localized management actions for seagrass conservation and restoration using a species distribution model. Aquat. Conserv. Marine Freshwater Ecosyst. 26, 639–659 (2016).
Ficetola, G. F., Thuiller, W. & Padoa‐Schioppa, E. From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Diversity Distrib. 15, 108–116 (2009).
Google Scholar
Wang, Y., Xie, B., Wan, F., Xiao, Q. & Dai, L. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Sci. 15, 365 (2007).
Google Scholar
Santini, L., Benítez‐López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. Assessing the reliability of species distribution projections in climate change research. Diversity Distrib. 27, 1035–1050 (2021).
Google Scholar
Guyennon, A. et al. Colonization and extinction dynamics and their link to the distribution of European trees at the continental scale. J. Biogeogr. 49, 117–129 (2022).
Google Scholar
Pritchard, G. & Leggott, M. A. Temperature, incubation rates and origins of dragonflies. Adv. Odonatol. 3, 121–126 (1987).
Clausnitzer, V. et al. Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol. Conserv. 142, 1864–1869 (2009).
Google Scholar
Córdoba-Aguilar, A. (Ed.). Dragonflies and damselflies: model organisms for ecological and evolutionary research (OUP Oxford, 2008).
Corbet, P. S. et al. Dragonflies: behaviour and ecology of Odonata (Harley books, 1999).
Troast, D., Suhling, F., Jinguji, H., Sahlén, G. & Ware, J. A global population genetic study of Pantala flavescens. PloS One 11, e0148949 (2016).
Google Scholar
Harabiš, F. & Dolný, A. The effect of ecological determinants on the dispersal abilities of central European dragonflies (Odonata). Odonatologica 40, 17 (2011).
Boudot, J. P. & Kalkman, V. J. (eds) Atlas of the European dragonflies and damselflies (KNNV publishing, 2015).
Dijkstra, K. D. & Schröter, A. Field guide to the dragonflies of Britain and Europe (Bloomsbury Publishing, 2020).
Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PloS One 12, e0189577 (2017).
Google Scholar
Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inf. 19, 10–15 (2014).
Google Scholar
Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).
Google Scholar
Burgman, M. A. & Fox, J. C. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning, Animal Conservation Forum (6, No. 1, pp. 19–28 (Cambridge University Press, 2003). https://doi.org/10.1017/S1367943003003044
Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Hijmans, R. J. Raster: geographic data analysis and modeling. https://CRAN.R-project.org/package=raster (2020).
Hijmans, R. J., Phillips S., Leathwick J. & Elith J. Dismo: species distribution modeling. https://CRAN.R-project.org/package=dismo (2020).
Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).
Google Scholar
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
Google Scholar
Mukaka, M. M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24, 69–71 (2012).
Google Scholar
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Google Scholar
Hausfather, Z. & Peters, G. P. Emissions–the ‘business as usual’story is misleading https://doi.org/10.1038/d41586-020-00177-3 (2020)
Mammola, S., Milano, F., Vignal, M., Andrieu, J. & Isaia, M. Associations between habitat quality, body size and reproductive fitness in the alpine endemic spider Vesubia jugorum. Global Ecol. Biogeogr. 28, 1325–1335 (2019).
Google Scholar
Mammola, S., Goodacre, S. L. & Isaia, M. Climate change may drive cave spiders to extinction. Ecography 41(1), 233–243 (2018).
Google Scholar
Hastie, T. J. & Tibshirani, R. J. Generalized additive models (Routledge, 2017).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3-4), 231–259 (2006).
Google Scholar
Phillips, S. J., Dudík, M. & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83).https://doi.org/10.1145/1015330.1015412 (2004).
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Animal Ecol. 77, 802–813 (2008).
Google Scholar
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Google Scholar
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
Google Scholar
Grenouillet, G., Buisson, L., Casajus, N. & Lek, S. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34, 9–17 (2011).
Google Scholar
Phillips, S. J. et al. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecol. Appl. 19, 181–197 (2009).
Google Scholar
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
Google Scholar
Zhang, Z. et al. Lineage‐level distribution models lead to more realistic climate change predictions for a threatened crayfish. Diversity Distrib. 27, 684–695 (2021).
Google Scholar
Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).
Google Scholar
Martín‐Vélez, V. & Abellán, P. Effects of climate change on the distribution of threatened invertebrates in a Mediterranean hotspot. Insect Conserv. Divers. https://doi.org/10.1111/icad.12563 (2022).
Qiao, H., Soberon, J. & Peterson, A. T. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6, 1126–1136 (2015).
Google Scholar
Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography 43, 1261–1277 (2020).
Google Scholar
Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).
Google Scholar
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61(1), 1–10 (1992).
Google Scholar
Cadotte, M. W. et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96–105 (2010).
Google Scholar
Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).
Google Scholar
Corbet, P. S. ‘Biology of Odonata’. Ann. Rev. Entomol. 25, 189–217 (1980).
Google Scholar
Mitchell. Dragonfly locomotion: Ecology, form and function. PhD thesis, (University of Leeds, 2018). https://etheses.whiterose.ac.uk/21211/.
The GIMP Development Team. GIMP (version 2.10.12). https://www.gimp.org (2019).
Weller, H. Colordistance: distance metrics for image color similarity. https://CRAN.R-project.org/package=colordistance (2020).
R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). https://www.R-project.org/.
de Bello, F., Botta‐Dukát, Z., Lepš, J. & Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 12, 443–448 (2021).
Google Scholar
Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: a review. Int. J. Odonatol. 11, 131–153 (2008).
Google Scholar
Acquah‐Lamptey, D., Brändle, M., Brandl, R. & Pinkert, S. Temperature‐driven color lightness and body size variation scale to local assemblages of European Odonata but are modified by propensity for dispersal. Ecol. Evol. 10, 8936–8948 (2020).
Google Scholar
Outomuro, D. & Johansson, F. Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North‐American dragonflies (Odonata: Libellulidae). Ecography 42, 309–320 (2019).
Google Scholar
Rundle, S. D., Bilton, D. T., Abbott, J. C. & Foggo, A. Range size in North American Enallagma damselflies correlates with wing size. Freshwater Biol. 52, 471–477 (2007).
Google Scholar
Finlayson, C. M. et al. The second warning to humanity–providing a context for wetland management and policy. Wetlands 39, 1–5 (2019).
Google Scholar
Okude, G. & Futahashi, R. Pigmentation and color pattern diversity in Odonata. Curr. Opin. Genet. Dev. 69, 14–20 (2021).
Google Scholar
Mani, M. S. Ecology and biogeography of high altitude insects, vol. 4. (Springer Science & Business Media, 2013).
Suárez‐Tovar, C. M., Guillermo‐Ferreira, R., Cooper, I. A., Cezário, R. R. & Córdoba‐Aguilar, A. Dragon colors: the nature and function of Odonata (dragonfly and damselfly) coloration. J. Zool. https://doi.org/10.1111/jzo.12963 (2022).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).
Google Scholar
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).
Google Scholar
Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
Google Scholar
Cardoso, P., Stefano, M., Francois, R. & Jose, C. C. BAT: biodiversity assessment tools. https://CRAN.R-project.org/package=BAT (2021).
Robert J. H. geosphere: spherical trigonometry. R package version 1.5-14. https://CRAN.R-project.org/package=geosphere (2021).
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 217–223 https://doi.org/10.1111/j.2041-210X.2011.00169.x (2012).
Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T. & Poon, A. F. Ancestral reconstruction. PLoS Comput. Biol. 12, e1004763 (2016).
Google Scholar
Orme, D. et al. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1 (2018).
Silva, L. F. et al. Functional responses of Odonata larvae to human disturbances in neotropical savanna headwater streams. Ecol. Indic. 133, 108367 (2021).
Google Scholar
Source: Ecology - nature.com