in

Climate drives long-term change in Antarctic Silverfish along the western Antarctic Peninsula

  • 1.

    DeWitt, H. H. The character of the midwater fish fauna of the Ross Sea, Antarctica. Antarctic Ecol. 1, 305–314 (1970).

    Google Scholar 

  • 2.

    Guglielmo, L., Granata, A. & Greco, S. Distribution and abundance of postlarval and juvenile Pleuragramma antarcticum (Pisces, Nototheniidae) off Terra Nova Bay (Ross Sea, Antarctica). Polar Biol. 19, 37–51 (1997).

    Google Scholar 

  • 3.

    La Mesa, M. & Eastman, J. T. Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fisheries 13, 241–266 (2012).

    Google Scholar 

  • 4.

    La Mesa, M., Eastman, J. T. & Vacchi, M. The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol. 27, 321–338 (2004).

    Google Scholar 

  • 5.

    Pinkerton, M. H., Bradford-Grieve, J. M. & Hanchet, S. M. A balanced model of the food web of the Ross Sea, Antarctica. CCAMLR Sci. 17, 1–31 (2010).

    Google Scholar 

  • 6.

    Caccavo, J. A. et al. Along-shelf connectivity and circumpolar gene flow in Antarctic silverfish (Pleuragramma antarctica). Sci. Rep. 8, 1–16 (2018).

    Google Scholar 

  • 7.

    Beers, J. M. & Jayasundara, N. Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures? J. Exp. Biol. 218, 1834–1845 (2015).

    PubMed 

    Google Scholar 

  • 8.

    Bilyk, K. T. & DeVries, A. L. Heat tolerance and its plasticity in Antarctic fishes. Compar. Biochem. Physiol. A Mol. Integr. Physiol. 158, 382–390 (2011).

    Google Scholar 

  • 9.

    Sandersfeld, T., Davison, W., Lamare, M. D., Knust, R. & Richter, C. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. J. Exp. Biol. 218, 2373–2381 (2015).

    PubMed 

    Google Scholar 

  • 10.

    Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Stammerjohn, S. E. & Scambos, T. A. Warming reaches the South Pole. Nat. Clim. Change 10, 710–711 (2020).

    Google Scholar 

  • 12.

    Henley, S. F. et al. Variability and change in the west Antarctic Peninsula marine system: research priorities and opportunities. Prog. Oceanogr. 173, 208–237 (2019).

    Google Scholar 

  • 13.

    Mintenbeck, K. & Torres, J. J. in The Antarctic silverfish: a keystone species in a changing ecosystem, 253–286 (Springer, 2017).

  • 14.

    Vacchi, M. et al. A nursery area for the Antarctic silverfish Pleuragramma antarcticum at Terra Nova Bay (Ross Sea): first estimate of distribution and abundance of eggs and larvae under the seasonal sea-ice. Polar Biol. 35, 1573–1585 (2012).

    Google Scholar 

  • 15.

    Vacchi, M., La Mesa, M., Dalu, M. & Macdonald, J. Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antartic Sci. 16, 299–305 (2004).

    Google Scholar 

  • 16.

    Kellermann, A. K. Midwater fish ecology. Found. Ecol. Res. West Antarctic Peninsula 70, 231–256 (1996).

    Google Scholar 

  • 17.

    La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235–245 (2015).

    Google Scholar 

  • 18.

    Parker, M. L. et al. Assemblages of micronektonic fishes and invertebrates in a gradient of regional warming along the Western Antarctic Peninsula. J. Mar. Syst. 152, 18–41 (2015).

    Google Scholar 

  • 19.

    Ross, R. M. et al. Trends, cycles, interannual variability for three pelagic species west of the Antarctic Peninsula 1993–2008. Mar. Ecol. Prog. Ser. 515, 11–32 (2014).

    Google Scholar 

  • 20.

    Koubbi, P. et al. Spatial distribution and inter-annual variations in the size frequency distribution and abundances of Pleuragramma antarcticum larvae in the Dumont d’Urville Sea from 2004 to 2010. Polar Sci. 5, 225–238 (2011).

    Google Scholar 

  • 21.

    Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 584, 45–65 (2017).

    CAS 

    Google Scholar 

  • 22.

    La Mesa, M. et al. Influence of environmental conditions on spatial distribution and abundance of early life stages of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), in the Ross Sea. Antarctic Sci. 22, 243 (2010).

    Google Scholar 

  • 23.

    Raphael, M. N. et al. The Amundsen Sea low: variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97, 111–121 (2016).

    Google Scholar 

  • 24.

    Fogt, R. L., Wovrosh, A. J., Langen, R. A. & Simmonds, I. The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas Low. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017337 (2012).

  • 25.

    Hosking, J. S., Orr, A., Marshall, G. J., Turner, J. & Phillips, T. The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 26, 6633–6648 (2013).

    Google Scholar 

  • 26.

    Hosking, J. S., Orr, A., Bracegirdle, T. J. & Turner, J. Future circulation changes off West Antarctica: sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophys. Res. Lett. 43, 367–376 (2016).

    Google Scholar 

  • 27.

    Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Change 143, 228–250 (2016).

    Google Scholar 

  • 28.

    Stammerjohn, S. E. et al. Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979–2014. Elementa Sci. Anthropocene 3, 000055 (2015).

  • 29.

    Holland, M. M., Landrum, L., Raphael, M. N. & Kwok, R. The regional, seasonal, and lagged influence of the Amundsen Sea Low on Antarctic sea ice. Geophys. Res. Lett. 45, 11–227 (2018).

    Google Scholar 

  • 30.

    Thoma, M., Jenkins, A., Holland, D. & Jacobs, S. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. https://doi.org/10.1029/2008GL034939 (2008).

  • 31.

    Dotto, T. S. et al. Control of the oceanic heat content of the Getz‐Dotson Trough, Antarctica, by the Amundsen Sea Low. J. Geophys. Res. Oceans 125, e2020JC016113 (2020).

  • 32.

    Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).

    CAS 

    Google Scholar 

  • 33.

    Dinniman, M. S., Klinck, J. M. & Hofmann, E. E. Sensitivity of circumpolar deep water transport and Ice Shelf Basal Melt along the West Antarctic Peninsula to changes in the winds. J. Clim. 25, 4799–4816 (2012).

    Google Scholar 

  • 34.

    Dinniman, M. S., Klinck, J. M. & Smith, W. O. A model study of circumpolar deep water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res. II Top. Stud. Oceanogr. 58, 1508–1523 (2011).

    CAS 

    Google Scholar 

  • 35.

    Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M. & Rignot, E. Origin of circumpolar deep water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nat. Commun. 9, 3403 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

    Google Scholar 

  • 37.

    Greaves, B. L. et al. The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean. Biogeosciences 17, 3815–3835 (2020).

    CAS 

    Google Scholar 

  • 38.

    Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. I Oceanogr. Res. Papers 101, 54–70 (2015).

    Google Scholar 

  • 39.

    La, H. S. et al. Zooplankton and micronekton respond to climate fluctuations in the Amundsen Sea polynya, Antarctica. Sci. Rep. 9, 10087 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Granata, A., Zagami, G., Vacchi, M. & Guglielmo, L. Summer and spring trophic niche of larval and juvenile Pleuragramma antarcticum in the Western Ross Sea, Antarctica. Polar Biol. 32, 369–382 (2009).

    Google Scholar 

  • 41.

    Bhaskaran, K., Gasparrini, A., Hajat, S., Smeeth, L. & Armstrong, B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 42, 1187–1195 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Ghigliotti, L. et al. Reproductive features of the Antarctic silverfish (Pleuragramma antarctica) from the western Ross Sea. Polar Biol. 40, 199–211 (2017).

    Google Scholar 

  • 43.

    Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting Adélie ­penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273–289 (2011).

    Google Scholar 

  • 44.

    Coggins, J. H. J. & McDonald, A. J. The influence of the Amundsen Sea Low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology. J. Geophys. Res. Atmos. 120, 2167–2189 (2015).

    Google Scholar 

  • 45.

    Assmann, K. M. et al. Variability of circumpolar deep water transport onto the Amundsen Sea Continental shelf through a shelf break trough. J. Geophys. Res. Oceans 118, 6603–6620 (2013).

    Google Scholar 

  • 46.

    Moffat, C., Owens, B. & Beardsley, R. C. On the characteristics of circumpolar deep water intrusions to the west Antarctic Peninsula Continental Shelf. J. Geophys. Res. Oceans https://doi.org/10.1029/2008JC004955 (2009).

  • 47.

    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Regan, H. C., Holland, P. R., Meredith, M. P. & Pike, J. Sources, variability and fate of freshwater in the Bellingshausen Sea, Antarctica. Deep Sea Res I Oceanogr. Res. Pap. 133, 59–71 (2018).

    Google Scholar 

  • 49.

    Holland, P. R. et al. Modeled trends in Antarctic sea ice thickness. J. Clim. 27, 3784–3801 (2014).

    Google Scholar 

  • 50.

    Hoppmann, M. et al. Platelet ice, the Southern Ocean’s hidden ice: a review. Ann. Glaciol. 61, 341–368 (2020).

    Google Scholar 

  • 51.

    Arrigo, K. R. Sea ice ecosystems. Annu. Rev. Mar. Sci 6, 439–467 (2014).

    Google Scholar 

  • 52.

    Veazey, A. L., Jeffries, M. O. & Morris, K. Small-scale variability of physical properties and structural characteristics of Antarctic fast ice. Ann. Glaciol. 20, 61–66 (1994).

    Google Scholar 

  • 53.

    Garrison, D. L., Ackley, S. F. & Buck, K. R. A physical mechanism for establishing algal populations in frazil ice. Nature 306, 363–365 (1983).

    CAS 

    Google Scholar 

  • 54.

    Quetin, L. B. & Ross, R. M. in Smithsonian at the Poles: Contributions to International Polar Year Science (eds Krupnik, I., Lang, M. A. & Miller, S. E.) 285–298 (IPY, 2009).

  • 55.

    Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024042 (2005).

  • 56.

    Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J. & Orr, A. The Amundsen Sea low. Int. J. Climatol. 33, 1818–1829 (2013).

    Google Scholar 

  • 59.

    Ding, Q., Steig, E. J., Battisti, D. S. & Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci. 4, 398–403 (2011).

    CAS 

    Google Scholar 

  • 60.

    Moline, M. A., Claustre, H., Frazer, T. K., Schofield, O. & Vernet, M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob. Change Biol. 10, 1973–1980 (2004).

    Google Scholar 

  • 61.

    Gleiber, M. Long-Term Change in Copepod Community Structure in the Western Antarctic Peninsula: Linkage to Climate and Implications for Carbon Cycling. Dissertations, Theses, and Masters Projects, College of William and Mary, Virginia Institute of Marine Science (2014).

  • 62.

    Wöhrmann, A. P., Hagen, W. & Kunzmann, A. Adaptations of the Antarctic silverfish Pleuragramma antarcticum(Pisces: Nototheniidae) to pelagic life in high-Antarctic waters. Mar. Ecol. Prog. Ser. 151, 205–218 (1997).

    Google Scholar 

  • 63.

    Venables, H. J., Clarke, A. & Meredith, M. P. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol. Oceanogr. 58, 1035–1047 (2013).

    Google Scholar 

  • 64.

    Meredith, M. P. et al. Variability in the freshwater balance of northern Marguerite Bay, Antarctic Peninsula: results from δ18O. Deep Sea Res. II Top. Stud. Oceanogr. 55, 309–322 (2008).

    Google Scholar 

  • 65.

    Slosarczyk, W. Attempts at a quantitative estimate by trawl sampling of distribution of postlarval and juvenile notothenioids (Pisces, Perciformes) in relation to environmental conditions in the Antarctic Peninsula region during SIBEX 1983–84. Mem Natl Inst Polar Res Spec Issue. 40, 299–315 (1986).

    Google Scholar 

  • 66.

    Varsamos, S., Nebel, C. & Charmantier, G. Ontogeny of osmoregulation in postembryonic fish: a review. Compar. Biochem. Physiol. A Mol. Integr. Physiol. 141, 401–429 (2005).

    Google Scholar 

  • 67.

    Gille, S. T., McKee, D. C. & Martinson, D. G. Temporal changes in the Antarctic circumpolar current: implications for the Antarctic Continental Shelves. Oceanography 29, 96–105 (2016).

    Google Scholar 

  • 68.

    Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    CAS 

    Google Scholar 

  • 69.

    Allen, M. et al. Technical summary: global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/site/assets/uploads/sites/2/2018/12/SR15_TS_High_Res.pdf (2019).

  • 70.

    Screen, J. A., Bracegirdle, T. J. & Simmonds, I. Polar climate change as manifest in atmospheric circulation. Curr. Clim. Change Rep. 4, 383–395 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Gao, M. et al. Historical fidelity and future change of Amundsen Sea Low under 1.5 °C–4 °C global warming in CMIP6. Atmos. Res. 255, 105533 (2021).

    Google Scholar 

  • 72.

    Emslie, S. D. & McDaniel, J. D. Adélie penguin diet and climate change during the middle to late Holocene in northern Marguerite Bay, Antarctic Peninsula. Polar Biol. 25, 222–229 (2002).

    Google Scholar 

  • 73.

    Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: winter-summer heterogeneity in the distribution of Adélie penguin populations. In Foundations for Ecological Research West of the Antarctic Peninsula 257–272 (American Geophysical Union, 1996).

  • 74.

    Cimino, M. A., Lynch, H. J., Saba, V. S. & Oliver, M. J. Projected asymmetric response of Adélie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).

    Google Scholar 

  • 76.

    Ruck, K. E., Steinberg, D. K. & Canuel, E. A. Regional differences in quality of krill and fish as prey along the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 509, 39–55 (2014).

    CAS 

    Google Scholar 

  • 77.

    Ainley, D. G. et al. Decadal trends in abundance, size and condition of Antarctic toothfish in McMurdo Sound, Antarctica, 1972–2011. Fish Fisheries 14, 343–363 (2013).

    Google Scholar 

  • 78.

    Eastman, J. T. Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biol. 4, 155–160 (1985).

    Google Scholar 

  • 79.

    Hanchet, S. et al. The Antarctic toothfish (Dissostichus mawsoni): biology, ecology, and life history in the Ross Sea region. Hydrobiologia 761, 397–414 (2015).

    Google Scholar 

  • 80.

    Pinkerton, M., Hanchet, S. & Bradford-Grieve, J. Finding the role of Antarctic toothfish in the Ross Sea ecosystem. Water Atmos. 15, 20–21 (2007).

    Google Scholar 

  • 81.

    Hanchet, S. M. & Rickard, G. J. A hypothetical life cycle for Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea region. CCAMLR Sci. 15, 35–53 (2008).

    Google Scholar 

  • 82.

    Fuiman, L., Davis, R. & Williams, T. Behavior of midwater fishes under the Antarctic ice: observations by a predator. Mar. Biol. 140, 815–822 (2002).

    Google Scholar 

  • 83.

    Casaux, R., Baroni, A. & Ramón, A. The diet of the Weddell Seal Leptonychotes weddellii at the Danco Coast, Antarctic Peninsula. Polar Biol. 29, 257–262 (2006).

    Google Scholar 

  • 84.

    Ponganis, P. J. & Stockard, T. K. Short note: the Antarctic toothfish: how common a prey for Weddell seals? Antarctic Sci. 19, 441–442 (2007).

    Google Scholar 

  • 85.

    Rumolo, P. et al. The diet of Weddell seals (Leptonychotes weddellii) in Terra Nova Bay using stable isotope analysis. Eur. Zool. J. 87, 94–104 (2020).

    Google Scholar 

  • 86.

    Hubold, G. & Ekau, W. Feeding patterns of post-larval and juvenile notothenioids in the southern Weddell Sea (Antarctica). Polar Biol. 10, 255–260 (1990).

  • 87.

    Moreno, C., Rueda, T. & Asencio, G. The trophic niche of Pleuragramma antarcticum in the Bransfield Strait, Antarctica: quantitative comparison with other areas of the Southern Ocean. Ser. Cient. INACH 35, 101–117 (1986).

  • 88.

    Gleiber, M. R., Steinberg, D. K. & Schofield, O. M. E. Copepod summer grazing and fecal pellet production along the Western Antarctic Peninsula. J. Plankton Res. 38, 732–750 (2016).

    CAS 

    Google Scholar 

  • 89.

    Garzio, L., Steinberg, D., Erickson, M. & Ducklow, H. Microzooplankton grazing along the Western Antarctic Peninsula. Aquat. Microb. Ecol. 70, 215–232 (2013).

    Google Scholar 

  • 90.

    Hobbie, J. E. Scientific accomplishments of the Long Term Ecological Research Program: an introduction. Bioscience 53, 17–20 (2003).

    Google Scholar 

  • 91.

    Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 67, 271–281 (2017).

    Google Scholar 

  • 92.

    Hilton, E. J., Watkins-Colwell, G. J. & Huber, S. K. The expanding role of natural history collections. Ichthyol. Herpetol. 109, 379–391 (2021).

    Google Scholar 

  • 93.

    Hoey, J. A. et al. Using multiple natural tags provides evidence for extensive larval dispersal across space and through time in summer flounder. Mol. Ecol. 29, 1421–1435 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 94.

    Houde, E. D. Emerging from Hjort’s shadow. J. Northw. Atl. Fish. Sci 41, 53–70 (2008).

    Google Scholar 

  • 95.

    Ducklow, H. W. et al. Marine pelagic ecosystems: the West Antarctic Peninsula. Philos. Trans. R. Soc. B Biol. Sci. 362, 67–94 (2007).

    Google Scholar 

  • 96.

    Smith, R. C. et al. The Palmer LTER: a long-term ecological research program at Palmer Station, Antarctica. Oceanography 8, 77–86 (1995).

    Google Scholar 

  • 97.

    Kellermann, A. K. Identification key and catalogue of larval Antarctic fishes. Ber. Polarforsch 1–138 (1990).

  • 98.

    Stammerjohn, S. E., Martinson, D. G., Smith, R. C. & Iannuzzi, R. A. Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 55, 2041–2058 (2008).

    Google Scholar 

  • 99.

    Hurrell, J. W. Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 100.

    Hosking, J. S. & National Center for Atmospheric Research Staff. (eds) The Climate Data Guide: Amundsen Sea Low indices. https://climatedataguide.ucar.edu/climate-data/amundsen-sea-low-indices (2020).

  • 101.

    O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).

    Google Scholar 

  • 102.

    Gareth, J., Daniela, W., Trevor, H. & Robert, T. An Introduction to Statistical Learning: With Applications in R (Spinger, 2013).

  • 103.

    Shono, H. Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fisheries Res. 93, 154–162 (2008).

    Google Scholar 

  • 104.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • 105.

    Denes, F. V., Silveira, L. F. & Beissinger, S. R. Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods Ecol. Evol. 6, 543–556 (2015).

    Google Scholar 

  • 106.

    Zuur, A. F. & Ieno, E. N. Beginner´s Guide to Zero-inflated Models with R (Highland Statistics Ltd., 2016).

  • 107.

    Barnett, A. G., Koper, N., Dobson, A. J., Schmiegelow, F. & Manseau, M. Using information criteria to select the correct variance–covariance structure for longitudinal data in ecology. Methods Ecol. Evol. 1, 15–24 (2010).

    Google Scholar 

  • 108.

    Clark, I. Statistics or geostatistics? Sampling error or nugget effect? J. Southern African Inst. Mining Metall. 110, 307–312 (2010).

    Google Scholar 

  • 109.

    Gschlößl, S. & Czado, C. Modelling count data with overdispersion and spatial effects. Stat. Papers 49, 531–552 (2008).

    Google Scholar 

  • 110.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Google Scholar 

  • 111.

    Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).

    PubMed 

    Google Scholar 

  • 112.

    Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. JOSS 3, 772 (2018).

    Google Scholar 

  • 113.

    Francq, B. G., Lin, D. & Hoyer, W. Confidence, prediction, and tolerance in linear mixed models. Stat. Med. 38, 5603–5622 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Spineli, L. M. & Pandis, N. Prediction interval in random-effects meta-analysis. Am. J. Orthod. Dentofacial Orthop. 157, 586–588 (2020).

    PubMed 

    Google Scholar 

  • 115.

    Comiso, J. C. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Clim. 13, 1674–1696 (2000).

    Google Scholar 

  • 116.

    Comiso, J. C. & Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. Oceans https://doi.org/10.1029/2007JC004257 (2008).

  • 117.

    Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1979 to present. https://doi.org/10.24381/CDS.F17050D7 (2019).

  • 118.

    Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    Google Scholar 


  • Source: Ecology - nature.com

    Reducing methane emissions at landfills

    Students dive into research with the MIT Climate and Sustainability Consortium