in

Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini)

  • Charlesworth, B., Charlesworth, D. & Barton, N. H. The effects of genetic and geographic structure on neutral variation. Annu. Rev. Ecol. Evol. Syst. 34(1), 99–125 (2003).

    Article 

    Google Scholar 

  • Bradburd, G. S., Ralph, P. L. & Coop, G. M. Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution 67(11), 3258–3273 (2013).

    Article 

    Google Scholar 

  • Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & De Meester, L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22(24), 5983–5999 (2013).

    Article 

    Google Scholar 

  • Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).

    Article 

    Google Scholar 

  • Broquet, T. & Petit, E. J. Molecular estimation of dispersal for ecology and population genetics. Annu. Rev. Ecol. Evol. Syst. 40, 193–216 (2009).

    Article 

    Google Scholar 

  • Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Article 

    Google Scholar 

  • Qiao, H., Saupe, E. E., Soberón, J., Peterson, A. T. & Myers, C. E. Impacts of niche breadth and dispersal ability on macroevolutionary patterns. Am. Nat. 188(2), 149–162 (2016).

    Article 

    Google Scholar 

  • Mayr, E. Ecological factors in speciation. Evolution 1(4), 263–288 (1947).

    Google Scholar 

  • Hua, X. & Wiens, J. J. How does climate influence speciation?. Am. Nat. 182(1), 1–12 (2013).

    Article 

    Google Scholar 

  • Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8(3), 336–352 (2005).

    Article 

    Google Scholar 

  • Schluter, D. Evidence for ecological speciation and its alternative. Science 323(5915), 737–741 (2009).

    Article 
    ADS 

    Google Scholar 

  • Wielstra, B. et al. Corresponding mitochondrial DNA and niche divergence for crested newt candidate species. PLoS ONE 7(9), e46671 (2012).

    Article 
    ADS 

    Google Scholar 

  • Wiens, J. J. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58(1), 193–197 (2004).

    Google Scholar 

  • Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18(4), 189–197 (2003).

    Article 

    Google Scholar 

  • Alvarado-Serrano, D. F. & Hickerson, M. J. Spatially explicit summary statistics for historical population genetic inference. Methods Ecol. Evol. 7(4), 418–427 (2016).

    Article 

    Google Scholar 

  • Rissler, L. J. Union of phylogeography and landscape genetics. PNAS 113(29), 8079–8086 (2016).

    Article 
    ADS 

    Google Scholar 

  • Pinho, C. & Hey, J. Divergence with gene flow: Models and data. Annu. Rev. Ecol. Evol. Syst. 41, 215–230 (2010).

    Article 

    Google Scholar 

  • Sobel, J. M., Chen, G. F., Watt, L. R. & Schemske, D. W. The biology of speciation. Evolution 64(2), 295–315 (2010).

    Article 

    Google Scholar 

  • Richards, C. L., Carstens, B. C. & Knowles, L. L. Distribution modelling and statistical phylogeography: An integrative framework for generating and testing alternative biogeographical hypotheses. J. Biogeogr. 34(11), 1833–1845 (2007).

    Article 

    Google Scholar 

  • Alvarado-Serrano, D. F. & Knowles, L. L. Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol. Ecol. 14(2), 233–248 (2014).

    Article 

    Google Scholar 

  • Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67(12), 3403–3411 (2013).

    Article 

    Google Scholar 

  • Wright, S. Isolation by distance. Genetics 28(2), 114–138 (1943).

    Article 

    Google Scholar 

  • Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68(1), 1–15 (2014).

    Article 

    Google Scholar 

  • Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23(23), 5649–5662 (2014).

    Article 

    Google Scholar 

  • Lee, C. R. & Mitchell-Olds, T. Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Mol. Ecol. 20(22), 4631–4642 (2011).

    Article 

    Google Scholar 

  • Moreira-Muñoz, A. Plant Geography of Chile Vol. 10, 978–990 (Springer, 2011).

    Book 

    Google Scholar 

  • Orme, A. R. Tectonism, climate, and landscape change. Phys. Geogr. South Am. 1, 23–44 (2007).

    Google Scholar 

  • Morando, M. et al. Diversification and evolutionary histories of Patagonian steppe lizards. in Lizards of Patagonia (pp. 217–254). (Springer, 2020).

  • Rull, V. Neotropical diversification: historical overview and conceptual insights. In Neotropical Diversification: Patterns and Processes (eds Rull, V. & Carnaval, A. C.) (Springer, 2020).

    Chapter 

    Google Scholar 

  • Lessa, E. P., D’Elía, G. & Pardiñas, U. F. J. Mammalian biogeography of Patagonia and Tierra del Fuego. In Bones, Clones and Biomes: The History and Recent Geography of Neotropical Animals (eds Patterson, B. D. & Costa, L. P.) 379–398 (University of Chicago Press, 2012).

    Chapter 

    Google Scholar 

  • Pardiñas, U. F., D’Elía, G. & Lessa, E. P. The evolutionary history of sigmodontine rodents in Patagonia and Tierra del Fuego. Biol. J. Linn. Soc. 2(103), 495–513 (2011).

    Article 

    Google Scholar 

  • Alarcón, O., D’Elía, G., Lessa, E. P. & Pardiñas, U. Phylogeographic structure of the Fossorial Long-Clawed Mouse Chelemys macronyx (Cricetidae: Sigmodontinae). Zool. Stud. 50(5), 682–688 (2011).

    Google Scholar 

  • Lessa, E. P., D’Elía, G. & Pardiñas, U. F. J. Genetic footprints of late Quaternary climate change in the diversity of Patagonian-Fueguian rodents. Mol. Ecol. 19(15), 3031–3037 (2010).

    Article 

    Google Scholar 

  • Valdez, L. & D’Elía, G. Genetic diversity and demographic history of the Shaggy Soft-Haired Mouse Abrothrix hirta (Cricetidae; Abrotrichini). Front. Genet. 12, 184 (2021).

    Article 

    Google Scholar 

  • Valdez, L., Quiroga-Carmona, M. & D’Elía, G. Genetic variation of the Chilean endemic long-haired mouse Abrothrix longipilis (Rodentia, Supramyomorpha, Cricetidae) in a geographical and environmental context. PeerJ 8, e9517 (2020).

    Article 

    Google Scholar 

  • Valdez, L. & D’Elía, G. Local persistence of Mann’s soft-haired mouse Abrothrix manni (Rodentia, Sigmodontinae) during Quaternary glaciations in southern Chile. PeerJ 6, e6130 (2018).

    Article 

    Google Scholar 

  • Quiroga-Carmona, M., Abud, C., Lessa, E. P. & D’Elía, G. The mitochondrial genetic diversity of the olive field mouse Abrothrix olivacea (Cricetidae; Abrotrichini) is latitudinally structured across its geographic distribution. J. Mamm. Evol. 29, 431–433 (2022).

    Article 

    Google Scholar 

  • Cañón, C., D’Elía, G., Pardiñas, U. F. & Lessa, E. P. Phylogeography of Loxodontomys micropus with comments on the alpha taxonomy of Loxodontomys (Cricetidae: Sigmodontinae). J. Mamm. 91(6), 1449–1458 (2010).

    Article 

    Google Scholar 

  • Palma, R. E., Boric-Bargetto, D., Torres-Perez, F., Hernández, C. E. & Yates, T. L. Glaciation effects on the phylogeographic structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes. PLoS ONE 7(3), e32206 (2012).

    Article 
    ADS 

    Google Scholar 

  • Rodríguez-Serrano, E., Cancino, R. & Palma, R. E. Molecular phylogeography of Abrothrix olivaceus (Rodentia: Sigmodontinae) in Chile. J. Mamm. 87(5), 971–980 (2006).

    Article 

    Google Scholar 

  • Rodríguez-Serrano, E., Hernandez, C. & Palma, R. E. A new record and an evaluation of the phylogenetic relationships of Abrothrix olivaceus markhami (Rodentia: Sigmodontinae). Mamm. Biol. 73(4), 309–317 (2008).

    Article 

    Google Scholar 

  • Sánchez, J., Poljak, S., Teta, P., Lanusse, L. & Lizarralde, M. S. A contribution to the knowledge of the taxonomy of the subgenus Abrothrix (Angelomys) (Rodentia, Cricetidae) in southernmost South America. Polar Biol. 45(4), 601–614 (2022).

    Article 

    Google Scholar 

  • Patton, J., Pardiñas, U. F. & D’Elía, G. Mammals of South America Vol. 2 (The University of Chicago Press, 2015).

    Book 

    Google Scholar 

  • Patterson, B. D., Smith, M. F. & Teta, P. Genus Abrothrix Waterhouse, 1837. In Mammals of South America Vol. 2 (eds Patton, J. L. et al.) 109–127 (The University of Chicago Press, 2015).

    Google Scholar 

  • Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    Article 

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965–1978 (2005).

    Article 

    Google Scholar 

  • Quantum GIS Development Team (2021) Quantum GIS Geographic Information System. Version 3.18.2-Zürich

  • Hijmans, R. J. et al. Package ‘raster’. R package. (2015).

  • Kuhn, M. caret: Classification and Regression Training. (2019) https://CRAN.R-project.org/package=caret.

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7. (2020). https://CRAN.R-project.org/package=vegan.

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).

    Article 

    Google Scholar 

  • Wang, C. et al. Comparing spatial maps of human population-genetic variation using Procrustes analysis. Stat. Appl. Genet. Mol. Biol. 9(1), 13 (2010).

    Article 
    MathSciNet 

    Google Scholar 

  • Wang, C., Zöllner, S. & Rosenberg, N. A. A quantitative comparison of the similarity between genes and geography in worldwide human populations. PLoS Genet. 8(8), e1002886 (2012).

    Article 

    Google Scholar 

  • Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.5–28. (2021). https://CRAN.R-project.org/package=rgdal.

  • Kierepka, M. E. & Latch, K. E. Performance of partial statistics in individual-based landscape genetics. Mol. Ecol. 15(3), 512–525 (2015).

    Article 

    Google Scholar 

  • Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).

    MATH 

    Google Scholar 

  • Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Soft. 25(1), 1–8 (2008).

    Article 

    Google Scholar 

  • Barria, A. M. et al. The importance of intraspecific variation for niche differentiation and species distribution models: the ecologically diverse frog Pleurodema thaul as study case. Evol. Biol. 47(3), 206–219 (2020).

    Article 

    Google Scholar 

  • Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biol. 23(5), 595–609 (2014).

    Article 

    Google Scholar 

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38(5), 541–545 (2015).

    Article 

    Google Scholar 

  • Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).

    Book 

    Google Scholar 

  • Viale, M. et al. Contrasting climates at both sides of the Andes in Argentina and Chile. Front. Environ. Sci. 7, 69 (2019).

    Article 

    Google Scholar 

  • Pacifici, M. et al. Global correlates of range contractions and expansions in terrestrial mammals. Nat. Commun. 11(1), 1–9 (2020).

    Article 

    Google Scholar 

  • Di Marco, M., Pacifici, M., Maiorano, L. & Rondinini, C. Drivers of change in the realised climatic niche of terrestrial mammals. Ecography 44(8), 1180–1190 (2021).

    Article 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40(7), 887–893 (2017).

    Article 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model 190(3–4), 231–259 (2006).

    Article 

    Google Scholar 

  • Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent Software for Modeling Species Niches and Distributions. (American Museum of Natural History, 2018) http://biodiversityinformatics.amnh.org/opensource/maxent/.

  • Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5(11), 1198–1205 (2014).

    Article 

    Google Scholar 

  • Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41(4), 629–643 (2014).

    Article 

    Google Scholar 

  • Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21(2), 335–342 (2011).

    Article 

    Google Scholar 

  • Warren, D. L., Wright, A. N., Seifert, S. N. & Shaffer, H. B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diver. Dist. 20(3), 334–343 (2014).

    Article 

    Google Scholar 

  • Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, 2010).

    Book 

    Google Scholar 

  • Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36(10), 1058–1069 (2013).

    Article 

    Google Scholar 

  • Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1(4), 330–342 (2010).

    Article 

    Google Scholar 

  • Osorio-Olvera, L. et al. ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 11(10), 1199–1206 (2020).

    Article 

    Google Scholar 

  • Guevara, L., Gerstner, B. E., Kass, J. M. & Anderson, R. P. Toward ecologically realistic predictions of species distributions: A cross-time example from tropical montane cloud forests. Glob. Change Biol. 24, 1511–1522 (2018).

    Article 
    ADS 

    Google Scholar 

  • Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311(5768), 1751–1753 (2008).

    Article 
    ADS 

    Google Scholar 

  • Watanabe, S. et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4(4), 845 (2011).

    Article 
    ADS 

    Google Scholar 

  • Knowles, L. L., Massatti, R., He, Q., Olson, L. E. & Lanier, H. C. Quantifying the similarity between genes and geography across Alaska’s alpine small mammals. J. Biogeogr. 43(7), 1464–1476 (2016).

    Article 

    Google Scholar 

  • McGaughran, A., Morgan, K. & Sommer, R. J. Environmental variables explain genetic structure in a beetle-associated nematode. PLoS ONE 9(1), e87317 (2014).

    Article 
    ADS 

    Google Scholar 

  • Wang, I. J. Choosing appropriate genetic markers and analytical methods for testing landscape genetic hypotheses. Mol. Ecol. 20(12), 2480–2482 (2011).

    Article 

    Google Scholar 

  • Bohonak, A. J. & Vandergast, A. G. The value of DNA sequence data for studying landscape genetics. Mol. Ecol. 20(12), 2477–2479 (2011).

    Article 

    Google Scholar 

  • Vandergast, A. G., Bohonak, A. J., Weissman, D. B. & Fisher, R. N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: Phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16(5), 977–992 (2007).

    Article 

    Google Scholar 

  • Pearson, O. P. & Smith, M. F. Genetic similarity between Akodon olivaceus and Akodon xanthorhinus (Rodentia: Muridae) in Argentina. J. Zool. 247(1), 43–52 (1999).

    Article 

    Google Scholar 

  • Smith, M. F., Kelt, D. A. & Patton, J. L. Testing models of diversification in mice in the Abrothrix olivaceus/xanthorhinus complex in Chile and Argentina. Mol. Ecol. 10(2), 397–405 (2001).

    Article 

    Google Scholar 

  • Palma, R. E., Marquet, P. A. & Boric-Bargetto, D. Inter- and intraspecific phylogeography of small mammals in the Atacama Desert and adjacent areas of northern Chile. J. Biogeogr. 32(11), 1931–1941 (2005).

    Article 

    Google Scholar 

  • Arroyo, M. T. K., Squeo, F. A., Armesto, J. J. & Villagran, C. Effects of aridity on plant diversity in the northern Chilean Andes: Results of a natural experiment. Ann. Mol. Bot. Gard. 1, 55–78 (1988).

    Article 

    Google Scholar 

  • Del Pozo, A. H., Fuentes, E. R., Hajek, E. R. & Molina, J. D. Zonación microclimática por efecto de los manchones de arbustos en el matorral de Chile central. Rev. Chil. Hist. Nat. 62, 85–94 (1989).

    Google Scholar 

  • Armesto, J. J., Vidiella, P. E. & Gutiérrez, J. R. Plant communities of the fog-free coastal desert of Chile: Plant strategies in a fluctuating environment. Rev. Chil. Hist. Nat. 66, 271–282 (1993).

    Google Scholar 

  • Veblen, T. T., Young, K. R. & Orme, A. R. The Physical Geography of South America (Oxford University Press, 2015).

    Google Scholar 

  • Kelt, D. A. et al. Community structure of desert small mammals: Comparisons across four continents. Ecology 77(3), 746–761 (1996).

    Article 

    Google Scholar 

  • Shenbrot, G. B., Krasnov, B. R. & Rogovin, K. A. Spatial Ecology of Desert Rodent Communities (Springer, 1999).

    Book 

    Google Scholar 

  • Van Strien, M. J., Holderegger, R. & Van Heck, H. J. Isolation-by-distance in landscapes: considerations for landscape genetics. Heredity 114(1), 27–37 (2015).

    Article 

    Google Scholar 

  • Diniz-Filho, J. A. F. et al. Mantel test in population genetics. Genet. Mol. Biol. 36(4), 475–485 (2013).

    Article 

    Google Scholar 

  • Blier, P. U., Dufresne, F. & Burton, R. S. Natural selection and the evolution of mtDNA-encoded peptides: Evidence for intergenomic co-adaptation. Trends Genet. 17(7), 400–406 (2001).

    Article 

    Google Scholar 

  • Meiklejohn, C. D., Montooth, K. L. & Rand, D. M. Positive and negative selection on the mitochondrial genome. Trends Genet. 23(6), 259–263 (2007).

    Article 

    Google Scholar 

  • Giorello, F. M. et al. An association between differential expression and genetic divergence in the Patagonian olive mouse (Abrothrix olivacea). Mol. Ecol. 27(16), 3274–3286 (2018).

    Article 

    Google Scholar 

  • Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115–1123 (2007).

    Article 

    Google Scholar 

  • Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. PNAS 106(Supplement 2), 19659–19665 (2009).

    Article 
    ADS 

    Google Scholar 

  • Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. PNAS 106(Supplement 2), 19644–19650 (2009).

    Article 
    ADS 

    Google Scholar 

  • Kearney, M. & Porter, W. P. Mapping the fundamental niche: Physiology, climate, and the distribution of a nocturnal lizard. Ecology 85(11), 3119–3131 (2004).

    Article 

    Google Scholar 

  • Kearney, M. & Porter, W. P. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12(4), 334–350 (2009).

    Article 

    Google Scholar 

  • Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: A phylogenetic analysis in amphibians. Proc. R. Soc. B. 281(1795), 20133229 (2014).

    Article 

    Google Scholar 

  • Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).

    Article 

    Google Scholar 

  • Holt, R. D. On the evolutionary ecology of species’ ranges. Evol. Ecol. Res. 5(2), 159–178 (2003).

    Google Scholar 

  • Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: The problem and the evidence. Evol. Appl. 7(1), 1–14 (2014).

    Article 

    Google Scholar 

  • Schmid, M. & Guillaume, F. The role of phenotypic plasticity on population differentiation. Heredity 119(4), 214–225 (2017).

    Article 

    Google Scholar 

  • Novoa, F., Rivera, A., Rosenmann, M. & Sabat, P. Intraspecific differences in metabolic rate of Chroeomys olivaceus (Rodentia: Muridae): The effect of thermal acclimation in arid and mesic habitats. Rev. Chil. Hist. Nat. 78, 207–214 (2005).

    Article 

    Google Scholar 

  • Bozinovic, F., Rojas, J. M., Maldonado, K., Sabat, P. & Naya, D. E. Between-population differences in digestive flexibility in the olivaceous field mouse. Zool 113(6), 373–377 (2010).

    Article 

    Google Scholar 

  • Bozinovic, F., Rojas, J. M., Gallardo, P. A., Palma, R. E. & Gianoli, E. Body mass and water economy in the South American olivaceous field mouse along a latitudinal gradient: Implications for climate change. J. Arid. Environ. 75(5), 411–415 (2011).

    Article 
    ADS 

    Google Scholar 

  • Naya, D. E. et al. Digestive morphology of two species of Abrothrix (Rodentia, Cricetidae): Comparison of populations from contrasting environments. J. Mammal. 95(6), 1222–1229 (2014).

    Article 

    Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62(11), 2868–2883 (2008).

    Article 

    Google Scholar 

  • Goudarzi, F. et al. Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser’s spotted newt (Neurergus kaiseri). Sci. Rep. 9(1), 1–12 (2019).

    Article 

    Google Scholar 

  • Pyron, R. A., Costa, G. C., Patten, M. A. & Burbrink, F. T. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol. Rev. 90(4), 1248–1262 (2015).

    Article 

    Google Scholar 

  • Latorre, C. et al. Late Quaternary environments and paleoclimate. In The Geology of Chile (eds Moreno, T. & Gibbons, W.) 309–328 (Geological Society, 2007).

    Chapter 

    Google Scholar 

  • Kaplan, M. R., Moreno, P. I. & Rojas, M. Glacial dynamics in southernmost South America during Marine Isotope Stage 5e to the Younger Dryas chron: A brief review with a focus on cosmogenic nuclide measurements. J. Quat. Sci. 23(6–7), 649–658 (2008).

    Article 

    Google Scholar 

  • McCulloch, R. D. et al. Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J. Quat. Sci. 15(4), 409–417 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1099-1417(200005)15:43.0.CO;2-#” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1099-1417%28200005%2915%3A4%3C409%3A%3AAID-JQS539%3E3.0.CO%3B2-%23″ aria-label=”Article reference 117″ data-doi=”10.1002/1099-1417(200005)15:43.0.CO;2-#”>Article 

    Google Scholar 

  • Giorello, F. M., D’Elía, G. & Lessa, E. P. Genomic footprints of Quaternary colonization and population expansion in the Patagonian-Fuegian region rules out a separate southern refugium in Tierra del Fuego. J. Biogeogr. 48(10), 2656–2670 (2021).

    Article 

    Google Scholar 

  • Knowles, L. L., Carstens, B. C. & Keat, M. L. Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Curr. Biol. 17(11), 940–946 (2007).

    Article 

    Google Scholar 

  • Diniz-Filho, J. A. F. et al. Correlation between genetic diversity and environmental suitability: Taking uncertainty from ecological niche models into account. Mol. Ecol. 15(5), 1059–1066 (2015).

    Article 

    Google Scholar 

  • Guevara, L., León-Paniagua, L., Rios, J. & Anderson, R. P. Variación entre modelos de circulación global para reconstrucciones de distribuciones geográficas del Último Máximo Glacial: Relevancia en la filogeografía. Ecosistemas 27(1), 62–76 (2018).

    Article 

    Google Scholar 

  • Guevara, L., Morrone, J. J. & León-Paniagua, L. Spatial variability in species’potential distributions during the Last Glacial Maximum under different Global Circulation Models: Relevance in evolutionary biology. J. Zool. Syst. Evol. Res. 57(1), 113–126 (2019).

    Article 

    Google Scholar 

  • Cab-Sulub, L. & Álvarez-Castañeda, S. T. Genetic isolation between conspecific populations and their relationship to climate heterogeneity. Acta Oecol. 116, 103847 (2022).

    Article 

    Google Scholar 

  • Teta, P., de la Sancha, N. U., D’Elía, G. & Patterson, B. D. Andean rain shadow effect drives phenotypic variation in a widely distributed Austral rodent. J. Biogeogr. 00, 1–12 (2022).

    Google Scholar 

  • León-Tapia, M. A. DNA barcoding and demographic history of Peromyscus yucatanicus (Rodentia: Cricetidae) endemic to the Yucatan Peninsula, Mexico. J. Mammal. Evol. 28(2), 481–495 (2021).

    Article 

    Google Scholar 

  • Lin, X. et al. Climatic-niche evolution with key morphological innovations across clades within Scutiger boulengeri (Anura: Megophryidae). Ecol. Evol. 11, 10353–10368 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique

    Investigation of anticoagulant rodenticide resistance induced by Vkorc1 mutations in rodents in Lebanon