in

Climate warming has compounded plant responses to habitat conversion in northern Europe

  • IPBES. Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • IPCC. Summary for Policymakers. in Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2022).

  • Travis, J. M. J. Climate change and habitat destruction: a deadly anthropogenic cocktail. P. R. Soc. B. 270, 467–473 (2003).

    Article 
    CAS 

    Google Scholar 

  • Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. P. R. Soc. B. 285, 20180792 (2018).

    Article 

    Google Scholar 

  • Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature-dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).

    Article 

    Google Scholar 

  • Fridley, J. D. & Wright, J. P. Temperature accelerates the rate fields become forests. Proc. Natl Acad. Sci. USA 115, 4702–4706 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Auffret, A. G., Kimberley, A., Plue, J. & Waldén, E. Super-regional land-use change and effects on the grassland specialist flora. Nat. Commun. 9, 3464 (2018).

    Article 
    ADS 

    Google Scholar 

  • Auffret, A. G. & Thomas, C. D. Synergistic and antagonistic effects of land use and non-native species on community responses to climate change. Glob. Change Biol. 25, 4303–4314 (2019).

    Article 
    ADS 

    Google Scholar 

  • Hill, M. O. Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol. Evol. 3, 195–205 (2012).

    Article 

    Google Scholar 

  • Isaac, N. J. B., Strien, A. J., van, August, T. A., Zeeuw, M. Pde & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).

    Article 

    Google Scholar 

  • Tyler, T., Herbertsson, L., Olofsson, J. & Olsson, P. A. Ecological indicator and traits values for Swedish vascular plants. Ecol. Indic. 120, 106923 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jiang, M., Bullock, J. M. & Hooftman, D. A. P. Mapping ecosystem service and biodiversity changes over 70 years in a rural English county. J. Appl. Ecol. 50, 841–850 (2013).

    Article 

    Google Scholar 

  • IPCC. Summary for Policymakers. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).

  • Van Calster, H. et al. Unexpectedly high 20th century floristic losses in a rural landscape in northern France. J. Ecol. 96, 927–936 (2008).

    Article 

    Google Scholar 

  • Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).

    Article 

    Google Scholar 

  • Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 

    Google Scholar 

  • Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 1–10 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, 4455 (2019).

    Article 
    ADS 

    Google Scholar 

  • Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).

    Article 
    ADS 

    Google Scholar 

  • Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    Article 

    Google Scholar 

  • Cannone, N. & Pignatti, S. Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Climatic Change 123, 201–214 (2014).

    Article 
    ADS 

    Google Scholar 

  • Wiens, J. J. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. PLOS Biol. 14, e2001104 (2016).

    Article 

    Google Scholar 

  • Hill, M. O. & Preston, C. D. Disappearance of boreal plants in southern Britain: habitat loss or climate change? Biol. J. Linn. Soc. 115, 598–610 (2015).

    Article 

    Google Scholar 

  • Lynn, J. S., Klanderud, K., Telford, R. J., Goldberg, D. E. & Vandvik, V. Macroecological context predicts species’ responses to climate warming. Glob. Change Biol. 27, 2088–2101 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, D. et al. Species selection under long-term experimental warming and drought explained by climatic distributions. N. Phytol. 217, 1494–1506 (2018).

    Article 

    Google Scholar 

  • Buitenwerf, R., Sandel, B., Normand, S., Mimet, A. & Svenning, J.-C. Land surface greening suggests vigorous woody regrowth throughout European semi-natural vegetation. Glob. Change Biol. 24, 5789–5801 (2018).

    Article 

    Google Scholar 

  • Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).

    Article 
    ADS 

    Google Scholar 

  • De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).

    Article 

    Google Scholar 

  • Ash, J. D., Givnish, T. J. & Waller, D. M. Tracking lags in historical plant species’ shifts in relation to regional climate change. Glob. Change Biol. 23, 1305–1315 (2017).

    Article 
    ADS 

    Google Scholar 

  • Savage, J. & Vellend, M. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38, 546–555 (2015).

    Article 

    Google Scholar 

  • Gerstner, K., Dormann, C. F., Stein, A., Manceur, A. M. & Seppelt, R. Effects of land use on plant diversity—a global meta-analysis. J. Appl. Ecol. 51, 1690–1700 (2014).

    Article 

    Google Scholar 

  • Kempel, A. et al. Nationwide revisitation reveals thousands of local extinctions across the ranges of 713 threatened and rare plant species. Conserv. Lett. 13, e12749 (2020).

    Article 

    Google Scholar 

  • Bilz, M., Kell, S. P., Maxted, N. & Lansdown, R. V. European Red List of Vascular Plants (Publications Office of the EU, 2011).

  • Timmermann, A., Damgaard, C., Strandberg, M. T. & Svenning, J.-C. Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. J. Appl. Ecol. 52, 21–30 (2015).

    Article 

    Google Scholar 

  • Staude, I. R. et al. Directional turnover towards larger-ranged plants over time and across habitats. Ecol. Lett. 25, 466–482 (2022).

    Article 

    Google Scholar 

  • Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).

    Article 

    Google Scholar 

  • Christiansen, D. M., Iversen, L. L., Ehrlén, J. & Hylander, K. Changes in forest structure drive temperature preferences of boreal understorey plant communities. J. Ecol. 110, 631–643 (2022).

    Article 

    Google Scholar 

  • Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Duprè, C. et al. Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob. Change Biol. 16, 344–357 (2010).

    Article 
    ADS 

    Google Scholar 

  • Tyler, T. et al. Climate warming and land‐use changes drive broad‐scale floristic changes in Southern Sweden. Glob. Change Biol. 24, 2607–2621 (2018).

    Article 
    ADS 

    Google Scholar 

  • Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7, 12283 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    Article 

    Google Scholar 

  • Plue, J. et al. Buffering effects of soil seed banks on plant community composition in response to land use and climate. Glob. Ecol. Biogeogr. 30, 128–139 (2021).

    Article 

    Google Scholar 

  • Honnay, O. & Bossuyt, B. Prolonged clonal growth: escape route or route to extinction? Oikos 108, 427–432 (2005).

    Article 

    Google Scholar 

  • Ozinga, W. A. et al. Dispersal failure contributes to plant losses in NW Europe. Ecol. Lett. 12, 66–74 (2009).

    Article 

    Google Scholar 

  • Svenning, J.-C., Normand, S. & Skov, F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31, 316–326 (2008).

    Article 

    Google Scholar 

  • Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).

    Article 
    CAS 

    Google Scholar 

  • Garrido, P. et al. Experimental rewilding may restore abandoned wood-pastures if policy allows. Ambio 50, 101–112 (2021).

    Article 

    Google Scholar 

  • Kowalczyk, R., Kamiński, T. & Borowik, T. Do large herbivores maintain open habitats in temperate forests? For. Ecol. Manag. 494, 119310 (2021).

    Article 

    Google Scholar 

  • Auffret, A. G., Schmucki, R., Reimark, J. & Cousins, S. A. O. Grazing networks provide useful functional connectivity for plants in fragmented systems. J. Veg. Sci. 23, 970–977 (2012).

    Article 

    Google Scholar 

  • Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blomgren, E., Falk, E. & Herloff, B. Bohusläns Flora (Föreningen Bohusläns Flora, 2011).

  • Fries, H. Göteborgs och Bohus Läns Fanerogamer och Ormbunkar (Elanders Boktryckeri, 1945).

  • Lidberg, R. & Lindström, H. Medelpads Flora (The vascular plants of Medelpad) (SBF Förlaget, 2010).

  • Sterner, R. Flora der insel Öland Vol. IX (Almqvist & Wiksells, 1938).

  • Almquist, E. Upplands vegetation och flora. Acta Phytogeogr. Suec. 1, 1–622 (1929).

    Google Scholar 

  • Jonsell, L. Upplands Flora (SBF Förlaget, 2010).

  • Maad, J., Sundberg, S., Stolpe, P. & Jonsell, L. Floraförändringar i Uppland under 1900-talet—en analys från Projekt Upplands flora [Floristic changes during the 20th century in Uppland, east central Sweden; with English summary]. Sven. Botanisk Tidskr. 103, 67–104 (2009).

    Google Scholar 

  • Auffret, A. G. et al. HistMapR: Rapid digitization of historical land-use maps in R. Methods Ecol. Evol. 8, 1453–1457 (2017).

    Article 

    Google Scholar 

  • August, T. et al. sparta: Trend analysis for unstructured data. R package version 0.1.44 (2018).

  • Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Redhead, J. W. et al. Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecol. Lett. 21, 1821–1832 (2018).

    Article 

    Google Scholar 

  • Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).

    Article 

    Google Scholar 

  • Stroh, P. A., Walker, K. J., Humphrey, T. A., Pescott, O. L. & Burkmar, R. J. Plant Atlas 2020: Mapping Changes in the Distribution of the British and Irish Flora (Princeton, planned publication date: 21/03/2023).

  • Pearce-Higgins, J. W., Ausden, M. A., Beale, C. M., Oliver, T. H. & Crick, H. Q. P. Research on the assessment of risks & opportunities for species in England as a result of climate change – NECR175. Natural England Commissioned Reports Vol. 175 (2015).

  • R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  • Telfer, M. G., Preston, C. D. & Rothery, P. A general method for measuring relative change in range size from biological atlas data. Biol. Conserv. 107, 99–109 (2002).

    Article 

    Google Scholar 

  • Bates, D., Maechler, M., Bolker, B. M. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4 (2014).

  • Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2009).

    Article 

    Google Scholar 

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article 

    Google Scholar 

  • Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Article 

    Google Scholar 

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 

  • Borcard, D. & Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153, 51–68 (2002).

    Article 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community ecology package. R package version 2.3-5. http://CRAN.R-project.org/package=vegan (2016).

  • Meineri, E. & Hylander, K. Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography 40, 1003–1013 (2017).

    Article 

    Google Scholar 

  • Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: an R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).

    Article 
    ADS 

    Google Scholar 

  • Breheny, P. & Burchett, W. Visualization of regression models using visreg. R. J. 9, 57–71 (2017).

    Article 

    Google Scholar 

  • Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 2.5-8. http://CRAN.R-project.org/package=raster (2016).


  • Source: Ecology - nature.com

    The effects of temperature stress and population origin on the thermal sensitivity of Lymantria dispar L. (Lepidoptera: Erebidae) larvae

    MIT scientists contribute to National Ignition Facility fusion milestone