IPBES. Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
Google Scholar
IPCC. Summary for Policymakers. in Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2022).
Travis, J. M. J. Climate change and habitat destruction: a deadly anthropogenic cocktail. P. R. Soc. B. 270, 467–473 (2003).
Google Scholar
Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. P. R. Soc. B. 285, 20180792 (2018).
Google Scholar
Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature-dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).
Google Scholar
Fridley, J. D. & Wright, J. P. Temperature accelerates the rate fields become forests. Proc. Natl Acad. Sci. USA 115, 4702–4706 (2018).
Google Scholar
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
Google Scholar
Auffret, A. G., Kimberley, A., Plue, J. & Waldén, E. Super-regional land-use change and effects on the grassland specialist flora. Nat. Commun. 9, 3464 (2018).
Google Scholar
Auffret, A. G. & Thomas, C. D. Synergistic and antagonistic effects of land use and non-native species on community responses to climate change. Glob. Change Biol. 25, 4303–4314 (2019).
Google Scholar
Hill, M. O. Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol. Evol. 3, 195–205 (2012).
Google Scholar
Isaac, N. J. B., Strien, A. J., van, August, T. A., Zeeuw, M. Pde & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).
Google Scholar
Tyler, T., Herbertsson, L., Olofsson, J. & Olsson, P. A. Ecological indicator and traits values for Swedish vascular plants. Ecol. Indic. 120, 106923 (2021).
Google Scholar
Jiang, M., Bullock, J. M. & Hooftman, D. A. P. Mapping ecosystem service and biodiversity changes over 70 years in a rural English county. J. Appl. Ecol. 50, 841–850 (2013).
Google Scholar
IPCC. Summary for Policymakers. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).
Van Calster, H. et al. Unexpectedly high 20th century floristic losses in a rural landscape in northern France. J. Ecol. 96, 927–936 (2008).
Google Scholar
Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).
Google Scholar
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Google Scholar
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
Google Scholar
Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 1–10 (2019).
Google Scholar
Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, 4455 (2019).
Google Scholar
Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).
Google Scholar
Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).
Google Scholar
Cannone, N. & Pignatti, S. Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Climatic Change 123, 201–214 (2014).
Google Scholar
Wiens, J. J. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. PLOS Biol. 14, e2001104 (2016).
Google Scholar
Hill, M. O. & Preston, C. D. Disappearance of boreal plants in southern Britain: habitat loss or climate change? Biol. J. Linn. Soc. 115, 598–610 (2015).
Google Scholar
Lynn, J. S., Klanderud, K., Telford, R. J., Goldberg, D. E. & Vandvik, V. Macroecological context predicts species’ responses to climate warming. Glob. Change Biol. 27, 2088–2101 (2021).
Google Scholar
Liu, D. et al. Species selection under long-term experimental warming and drought explained by climatic distributions. N. Phytol. 217, 1494–1506 (2018).
Google Scholar
Buitenwerf, R., Sandel, B., Normand, S., Mimet, A. & Svenning, J.-C. Land surface greening suggests vigorous woody regrowth throughout European semi-natural vegetation. Glob. Change Biol. 24, 5789–5801 (2018).
Google Scholar
Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).
Google Scholar
De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).
Google Scholar
Ash, J. D., Givnish, T. J. & Waller, D. M. Tracking lags in historical plant species’ shifts in relation to regional climate change. Glob. Change Biol. 23, 1305–1315 (2017).
Google Scholar
Savage, J. & Vellend, M. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38, 546–555 (2015).
Google Scholar
Gerstner, K., Dormann, C. F., Stein, A., Manceur, A. M. & Seppelt, R. Effects of land use on plant diversity—a global meta-analysis. J. Appl. Ecol. 51, 1690–1700 (2014).
Google Scholar
Kempel, A. et al. Nationwide revisitation reveals thousands of local extinctions across the ranges of 713 threatened and rare plant species. Conserv. Lett. 13, e12749 (2020).
Google Scholar
Bilz, M., Kell, S. P., Maxted, N. & Lansdown, R. V. European Red List of Vascular Plants (Publications Office of the EU, 2011).
Timmermann, A., Damgaard, C., Strandberg, M. T. & Svenning, J.-C. Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. J. Appl. Ecol. 52, 21–30 (2015).
Google Scholar
Staude, I. R. et al. Directional turnover towards larger-ranged plants over time and across habitats. Ecol. Lett. 25, 466–482 (2022).
Google Scholar
Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).
Google Scholar
Christiansen, D. M., Iversen, L. L., Ehrlén, J. & Hylander, K. Changes in forest structure drive temperature preferences of boreal understorey plant communities. J. Ecol. 110, 631–643 (2022).
Google Scholar
Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).
Google Scholar
Duprè, C. et al. Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob. Change Biol. 16, 344–357 (2010).
Google Scholar
Tyler, T. et al. Climate warming and land‐use changes drive broad‐scale floristic changes in Southern Sweden. Glob. Change Biol. 24, 2607–2621 (2018).
Google Scholar
Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231 (2018).
Google Scholar
Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7, 12283 (2016).
Google Scholar
Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).
Google Scholar
Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
Google Scholar
Plue, J. et al. Buffering effects of soil seed banks on plant community composition in response to land use and climate. Glob. Ecol. Biogeogr. 30, 128–139 (2021).
Google Scholar
Honnay, O. & Bossuyt, B. Prolonged clonal growth: escape route or route to extinction? Oikos 108, 427–432 (2005).
Google Scholar
Ozinga, W. A. et al. Dispersal failure contributes to plant losses in NW Europe. Ecol. Lett. 12, 66–74 (2009).
Google Scholar
Svenning, J.-C., Normand, S. & Skov, F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31, 316–326 (2008).
Google Scholar
Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).
Google Scholar
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
Google Scholar
Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).
Google Scholar
Garrido, P. et al. Experimental rewilding may restore abandoned wood-pastures if policy allows. Ambio 50, 101–112 (2021).
Google Scholar
Kowalczyk, R., Kamiński, T. & Borowik, T. Do large herbivores maintain open habitats in temperate forests? For. Ecol. Manag. 494, 119310 (2021).
Google Scholar
Auffret, A. G., Schmucki, R., Reimark, J. & Cousins, S. A. O. Grazing networks provide useful functional connectivity for plants in fragmented systems. J. Veg. Sci. 23, 970–977 (2012).
Google Scholar
Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).
Google Scholar
Blomgren, E., Falk, E. & Herloff, B. Bohusläns Flora (Föreningen Bohusläns Flora, 2011).
Fries, H. Göteborgs och Bohus Läns Fanerogamer och Ormbunkar (Elanders Boktryckeri, 1945).
Lidberg, R. & Lindström, H. Medelpads Flora (The vascular plants of Medelpad) (SBF Förlaget, 2010).
Sterner, R. Flora der insel Öland Vol. IX (Almqvist & Wiksells, 1938).
Almquist, E. Upplands vegetation och flora. Acta Phytogeogr. Suec. 1, 1–622 (1929).
Jonsell, L. Upplands Flora (SBF Förlaget, 2010).
Maad, J., Sundberg, S., Stolpe, P. & Jonsell, L. Floraförändringar i Uppland under 1900-talet—en analys från Projekt Upplands flora [Floristic changes during the 20th century in Uppland, east central Sweden; with English summary]. Sven. Botanisk Tidskr. 103, 67–104 (2009).
Auffret, A. G. et al. HistMapR: Rapid digitization of historical land-use maps in R. Methods Ecol. Evol. 8, 1453–1457 (2017).
Google Scholar
August, T. et al. sparta: Trend analysis for unstructured data. R package version 0.1.44 (2018).
Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2021).
Google Scholar
Redhead, J. W. et al. Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecol. Lett. 21, 1821–1832 (2018).
Google Scholar
Gillings, S. et al. Breeding and wintering bird distributions in Britain and Ireland from citizen science bird atlases. Glob. Ecol. Biogeogr. 28, 866–874 (2019).
Google Scholar
Stroh, P. A., Walker, K. J., Humphrey, T. A., Pescott, O. L. & Burkmar, R. J. Plant Atlas 2020: Mapping Changes in the Distribution of the British and Irish Flora (Princeton, planned publication date: 21/03/2023).
Pearce-Higgins, J. W., Ausden, M. A., Beale, C. M., Oliver, T. H. & Crick, H. Q. P. Research on the assessment of risks & opportunities for species in England as a result of climate change – NECR175. Natural England Commissioned Reports Vol. 175 (2015).
R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Telfer, M. G., Preston, C. D. & Rothery, P. A general method for measuring relative change in range size from biological atlas data. Biol. Conserv. 107, 99–109 (2002).
Google Scholar
Bates, D., Maechler, M., Bolker, B. M. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4 (2014).
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2009).
Google Scholar
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
Google Scholar
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
Google Scholar
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Google Scholar
Borcard, D. & Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153, 51–68 (2002).
Google Scholar
Oksanen, J. et al. vegan: Community ecology package. R package version 2.3-5. http://CRAN.R-project.org/package=vegan (2016).
Meineri, E. & Hylander, K. Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography 40, 1003–1013 (2017).
Google Scholar
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: an R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).
Google Scholar
Breheny, P. & Burchett, W. Visualization of regression models using visreg. R. J. 9, 57–71 (2017).
Google Scholar
Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 2.5-8. http://CRAN.R-project.org/package=raster (2016).
Source: Ecology - nature.com