Spalding, M. D. & Grenfell, A. M. New estimates of global and regional coral reef areas. Coral Reefs 16, 225–230 (1997).
Google Scholar
Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
Google Scholar
Roberts, C. M. et al. Marine Biodiversity Hotspots and Conservation Priorities for Tropical Reefs. Science 295, 1280–1284 (2002).
Google Scholar
Johannes, R., Wiebe, W., Crossland, C., Rimmer, D. & Smith, S. Latitudinal limits of coral reef growth. Mar. Ecol. Prog. Ser. 11, 105–111 (1983).
Google Scholar
Kleypas, J. A., Mcmanus, J. W. & Meñez, L. A. B. Environmental Limits to Coral Reef Development: Where Do We Draw the Line? Am. Zool. 39, 146–159 (1999).
Google Scholar
Yamano, H., Hori, K., Yamauchi, M., Yamagawa, O. & Ohmura, A. Highest-latitude coral reef at Iki Island, Japan. Coral Reefs 20, 9–12 (2001).
Google Scholar
Guan, Y., Hohn, S. & Merico, A. Suitable Environmental Ranges for Potential Coral Reef Habitats in the Tropical Ocean. PLOS ONE 10, e0128831 (2015).
Google Scholar
Bellwood, D. R. & Hughes, T. P. Regional-Scale Assembly Rules and Biodiversity of Coral Reefs. Science 292, 1532–1535 (2001).
Google Scholar
Connolly, S. R., Bellwood, D. R. & Hughes, T. P. Indo-Pacific Biodiversity of Coral Reefs: Deviations from a Mid-Domain Model. Ecology 84, 2178–2190 (2003).
Google Scholar
Bellwood, D. R., Hughes, T. P., Connolly, S. R. & Tanner, J. Environmental and geometric constraints on Indo‐Pacific coral reef biodiversity. Ecol. Lett. 8, 643–651 (2005).
Google Scholar
Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl Acad. Sci. 109, 21378–21383 (2012).
Google Scholar
Veron, J. E. N. et al. Delineating the Coral Triangle. Galaxea. J. Coral Reef. Stud. 11, 91–100 (2009).
Google Scholar
Briggs, J. C. Marine Longitudinal Biodiversity: Causes and Conservation. Divers. Distrib. 13, 544–555 (2007).
Google Scholar
Renema, W. et al. Hopping Hotspots: Global Shifts in Marine Biodiversity. Science 321, 654–657 (2008).
Google Scholar
Kiessling, W. Paleoclimatic significance of Phanerozoic reefs. Geology 29, 751–754 (2001).
Google Scholar
Wallace, C. & Rosen, B. Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: Implications for the evolution of modern diversity patterns of reef corals. Proc. Biol. Sci. 273, 975–982 (2006).
Google Scholar
Perrin, C. & Kiessling, W. Latitudinal trends in Cenozoic reef patterns and their relationship to climate. Carbonate Syst. Oligocene–Miocene Clim. Transit. 17–33 (Wiley-Blackwell, 2010).
Kiessling, W. Habitat effects and sampling bias on Phanerozoic reef distribution. Facies 51, 24–32 (2005).
Google Scholar
Kiessling, W. Reef expansion during the Triassic: Spread of photosymbiosis balancing climatic cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 290, 11–19 (2010).
Google Scholar
Ziegler, A. M., Hulver, M. L., Lotts, A. L. & Schmachtenberg, W. F. Uniformitarianism and palaeoclimates: inferences from the distribution of carbonate rocks. In: Fossils and Climate (ed. Brenchley, P. J.), 3–25 (Wiley, Chichester, 1984).
Crame, J. A. & Rosen, B. R. Cenozoic palaeogeography and the rise of modern biodiversity patterns. Geol. Soc. Lond. Spec. Publ. 194, 153–168 (2002).
Google Scholar
Leprieur, F. et al. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7, 1–8 (2016).
Google Scholar
Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl Acad. Sci. U. S. A. 114, 5653–5658 (2017).
Google Scholar
Roberts, G. G. & Mannion, P. D. Timing and periodicity of Phanerozoic marine biodiversity and environmental change. Sci. Rep. 9, 6116 (2019).
Google Scholar
Valentine, J. W. & Moores, E. M. Global Tectonics and the Fossil Record. J. Geol. 80, 167–184 (1972).
Google Scholar
Pellissier, L., Heine, C., Rosauer, D. F. & Albouy, C. Are global hotspots of endemic richness shaped by plate tectonics? Biol. J. Linn. Soc. 123, 247–261 (2017).
Google Scholar
Chittaro, P. M. Species-area relationships for coral reef fish assemblages of St. Croix, US Virgin Islands. Mar. Ecol. Prog. Ser. 233, 253–261 (2002).
Google Scholar
Tittensor, D. P., Micheli, F., Nyström, M. & Worm, B. Human impacts on the species–area relationship in reef fish assemblages. Ecol. Lett. 10, 760–772 (2007).
Google Scholar
Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).
Google Scholar
Huntington, B. E. & Lirman, D. Species-area relationships in coral communities: evaluating mechanisms for a commonly observed pattern. Coral Reefs 31, 929–938 (2012).
Google Scholar
Kiessling, W., Simpson, C. & Foote, M. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327, 196–198 (2010).
Google Scholar
Pandolfi, J. M. et al. Global Trajectories of the Long-Term Decline of Coral Reef Ecosystems. Science 301, 955–958 (2003).
Google Scholar
Hoegh-Guldberg, O. Coral reef ecosystems and anthropogenic climate change. Reg. Environ. Change 11, 215–227 (2011).
Google Scholar
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
Google Scholar
Kim, S. W. et al. Refugia under threat: Mass bleaching of coral assemblages in high-latitude eastern Australia. Glob. Change Biol. 25, 3918–3931 (2019).
Google Scholar
Pörtner, H.-O. et al. IPCC special report on the ocean and cryosphere in a changing climate. IPCC Intergov. Panel Clim. Change Geneva Switz. 1, 1–755 (2019).
Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).
Google Scholar
Couce, E., Ridgwell, A. & Hendy, E. J. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Glob. Change Biol. 19, 3592–3606 (2013).
Google Scholar
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral Reef Ecosystems under Climate Change and Ocean Acidification. Front. Mar. Sci. 4, 1–20 (2017).
O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Google Scholar
Precht, W. F. & Aronson, R. B. Climate flickers and range shifts of reef corals. Front. Ecol. Environ. 2, 307–314 (2004).
Google Scholar
Greenstein, B. J. & Pandolfi, J. M. Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob. Change Biol. 14, 513–528 (2008).
Google Scholar
Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).
Google Scholar
Vilhena, D. A. & Smith, A. B. Spatial Bias in the Marine Fossil Record. PLoS ONE 8, 1–7 (2013).
Google Scholar
Close, R. A., Benson, R. B. J., Saupe, E. E., Clapham, M. E. & Butler, R. J. The spatial structure of Phanerozoic marine animal diversity. Science 368, 420–424 (2020).
Google Scholar
Jones, L. A., Dean, C. D., Mannion, P. D., Farnsworth, A. & Allison, P. A. Spatial sampling heterogeneity limits the detectability of deep time latitudinal biodiversity gradients. Proc. R. Soc. B Biol. Sci. 288, 20202762 (2021).
Google Scholar
Jones, L. A. & Eichenseer, K. Uneven spatial sampling distorts reconstructions of Phanerozoic seawater temperature. Geology (2021) https://doi.org/10.1130/G49132.1.
Stolarski, J. et al. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol. Biol. 11, 1–11 (2011).
Google Scholar
Frankowiak, K. et al. Photosymbiosis and the expansion of shallow-water corals. Sci. Adv. 2, e1601122 (2016).
Google Scholar
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Google Scholar
Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).
Google Scholar
Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).
Google Scholar
Hirzel, A. H., LeLay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
Google Scholar
Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
Google Scholar
Miller, K. G. et al. The Phanerozoic Record of Global Sea-Level Change. Science 310, 1293–1298 (2005).
Google Scholar
Hallam, A., Grose, J. A. & Ruffell, A. H. Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81, 173–187 (1991).
Google Scholar
Gröcke, D. R., Price, G. D., Ruffell, A. H., Mutterlose, J. & Baraboshkin, E. Isotopic evidence for Late Jurassic–Early Cretaceous climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 202, 97–118 (2003).
Google Scholar
Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J. & Beerling, D. J. CO2 as a primary driver of Phanerozoic climate. GSA Today 14, 1–10 (2004).
Grabowski, J. et al. Magnetic susceptibility and spectral gamma logs in the Tithonian–Berriasian pelagic carbonates in the Tatra Mts (Western Carpathians, Poland): Palaeoenvironmental changes at the Jurassic/Cretaceous boundary. Cretac. Res. 43, 1–17 (2013).
Google Scholar
Vickers, M. L. et al. The duration and magnitude of Cretaceous cool events: Evidence from the northern high latitudes. GSA Bull. 131, 1979–1994 (2019).
Google Scholar
Hay, W. W. & Floegel, S. New thoughts about the Cretaceous climate and oceans. Earth-Sci. Rev. 115, 262–272 (2012).
Google Scholar
Tennant, J. P., Mannion, P. D. & Upchurch, P. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval. Nat. Commun. 7, 12737 (2016).
Google Scholar
Schouten, S. et al. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids. Geology 36, 147 (2008).
Google Scholar
Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).
Google Scholar
Crame, J. A. Taxonomic diversity gradients through geological time. Divers. Distrib. 7, 175–189 (2001).
Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).
Google Scholar
Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Philos. Trans. R. Soc. B Biol. Sci. 371, 1–12 (2016).
Google Scholar
Saupe, E. E. et al. Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proc. Natl Acad. Sci. 116, 12895–12900 (2019).
Google Scholar
Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).
Google Scholar
Hall, R. Southeast Asia’s changing palaeogeography. Blumea 54, 148–161 (2009).
Google Scholar
Gaboriau, T. et al. Ecological constraints coupled with deep-time habitat dynamics predict the latitudinal diversity gradient in reef fishes. Proc. R. Soc. B Biol. Sci. 286, 20191506 (2019).
Google Scholar
Saupe, E. E. et al. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nat. Geosci. 13, 65–70 (2020).
Google Scholar
Lunt, D. J. et al. DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Clim 17, 203–227 (2021).
Google Scholar
Freeman, L. A., Kleypas, J. A. & Miller, A. J. Coral Reef Habitat Response to Climate Change Scenarios. PLoS ONE 8, 1–14 (2013).
Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 1–8 (2017).
Google Scholar
Farnsworth, A. et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, 1–13 (2019).
Google Scholar
Zhang, L. et al. Consensus Forecasting of Species Distributions: The Effects of Niche Model Performance and Niche Properties. PLoS ONE 10, 1–18 (2015).
Harrison, S. P. et al. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Change 5, 735–743 (2015).
Google Scholar
Seo, C., Thorne, J. H., Hannah, L. & Thuiller, W. Scale effects in species distribution models: implications for conservation planning under climate change. Biol. Lett. 5, 39–43 (2009).
Google Scholar
Couce, E., Ridgwell, A. & Hendy, E. J. Environmental controls on the global distribution of shallow-water coral reefs. J. Biogeogr. 39, 1508–1523 (2012).
Google Scholar
Laborel, J. West African reef corals: an hypothesis on their origin. in Proceedings of the Second International Coral Reef Symposium vol. 1 425–443 (Great Barrier Reef Committee Brisbane, 1974).
Spalding, M., Spalding, M. D., Ravilious, C. & Green, E. P. World Atlas of Coral Reefs. (University of California Press, 2001).
Block, S. et al. Where to Dig for Fossils: Combining Climate-Envelope, Taphonomy and Discovery Models. PLoS ONE 11, 1–16 (2016).
Jones, L. A. et al. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. R. Soc. Open Sci. 6, 182111 (2019).
Google Scholar
Kusumoto, B. et al. Global distribution of coral diversity: Biodiversity knowledge gradients related to spatial resolution. Ecol. Res. 35, 315–326 (2020).
Google Scholar
Muir, P. R., Wallace, C. C., Done, T. & Aguirre, J. D. Limited scope for latitudinal extension of reef corals. Science 348, 1135–1138 (2015).
Google Scholar
Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35, 213–226 (2021).
Google Scholar
Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models:HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).
Google Scholar
Sheppard, C. R. C. Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425, 294–297 (2003).
Google Scholar
Saupe, E. E. et al. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. R. Soc. B Biol. Sci. 281, 1–9 (2014).
Haywood, A. M. et al. What can Palaeoclimate Modelling do for you? Earth Syst. Environ. 3, 1–18 (2019).
Google Scholar
Sellwood, B. W. & Valdes, P. J. Mesozoic climates: General circulation models and the rock record. Sediment. Geol. 190, 269–287 (2006).
Google Scholar
Waterson, A. M. et al. Modelling the climatic niche of turtles: a deep-time perspective. Proc. R. Soc. B Biol. Sci. 283, 1–9 (2016).
Chiarenza, A. A. et al. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 10, 1–14 (2019).
Google Scholar
Dunne, E. M., Farnsworth, A., Greene, S. E., Lunt, D. J. & Butler, R. J. Climatic drivers of latitudinal variation in Late Triassic tetrapod diversity. Palaeontology 64, 101–117 (2020).
Google Scholar
Lyster, S. J., Whittaker, A. C., Allison, P. A., Lunt, D. J. & Farnsworth, A. Predicting sediment discharges and erosion rates in deep time—examples from the late Cretaceous North American continent. Basin Res. 1–27 (2020) https://doi.org/10.1111/bre.12442.
Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim 12, 1181–1198 (2016).
Google Scholar
Vasquez, V. L., de Lima, A. A., dos Santos, A. P. & Pinto, M. P. Influence of spatial extent on habitat suitability models for primate species of Atlantic Forest. Ecol. Inform. 61, 101179 (2021).
Google Scholar
Collins, D. S. et al. Controls on tidal sedimentation and preservation: Insights from numerical tidal modelling in the Late Oligocene–Miocene South China Sea, Southeast Asia. Sedimentology 65, 2468–2505 (2018).
Google Scholar
Dean, C. D., Collins, D. S., van Cappelle, M., Avdis, A. & Hampson, G. J. Regional-scale paleobathymetry controlled location, but not magnitude, of tidal dynamics in the Late Cretaceous Western Interior Seaway, USA. Geology 47, 1083–1087 (2019).
Google Scholar
Markwick, P. J. & Valdes, P. J. Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (late Cretaceous) example. Palaeogeogr. Palaeoclimatol. Palaeoecol. 213, 37–63 (2004).
Google Scholar
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Google Scholar
Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 222, 1343–1346 (2011).
Google Scholar
Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models: with applications in R. (Cambridge University Press, 2017).
Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3, 203–213 (2010).
Google Scholar
Owens, H. L. et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Model. 263, 10–18 (2013).
Google Scholar
Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction. (Cambridge University Press, 2010). https://doi.org/10.1017/CBO9780511810602.
Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).
Google Scholar
Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).
Google Scholar
Kiessling, W. & Krause, M. C. PARED—An online database of Phanerozoic reefs. https://www.paleo-reefs.pal.uni-erlangen.de/ (2021).
Jones, L. A., Mannion, P. D., Farnsworth, A., Bragg, F. & Lunt, D. J. Code from ‘Climatic and tectonic drivers shaped the tropical distribution of coral reefs’. Zenodo (2022) https://doi.org/10.5281/zenodo.6458366.
Source: Ecology - nature.com