in

Co-seeding grasses and forbs supports restoration of species-rich grasslands and improves weed control in ex-arable land

  • Tölgyesi, C., Buisson, E., Helm, A., Temperton, V. M. & Török, P. Urgent need for updating a slogan of global climate actions from ‘tree planting’ to ‘restore native vegetation’. Restor. Ecol. 30, e13594. https://doi.org/10.1111/rec.13594 (2021).

    Article 

    Google Scholar 

  • Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).

    Article 

    Google Scholar 

  • Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027. https://doi.org/10.1088/1748-9326/aacb39 (2018).

    Article 
    ADS 

    Google Scholar 

  • Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stevens, C. J. Recent advances in understanding grasslands. F1000 Res. https://doi.org/10.12688/f1000research.15050.1 (2018).

    Article 

    Google Scholar 

  • Klaus, V. H. et al. Do biodiversity-ecosystem functioning experiments inform stakeholders how to simultaneously conserve biodiversity and increase ecosystem service provisioning in grasslands?. Biol. Conserv. 245, 108552. https://doi.org/10.1016/j.biocon.2020.108552 (2020).

    Article 

    Google Scholar 

  • Dudley, N. et al. Grasslands and savannahs in the UN decade on ecosystem restoration. Restor. Ecol. 28, 1313–1317 (2020).

    Article 

    Google Scholar 

  • Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).

    Article 
    ADS 

    Google Scholar 

  • Lengyel, S. et al. Restoration for variability: Emergence of the habitat diversity paradigm in terrestrial ecosystem restoration. Restor. Ecol. 28, 1087–1099 (2020).

    Article 

    Google Scholar 

  • Waldén, E. & Lindborg, R. Long term positive effect of grassland restoration on plant diversity: Success or not?. PLoS ONE 11, e0155836. https://doi.org/10.1371/journal.pone.0155836 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lengyel, S. et al. Grassland restoration to conserve landscape-level biodiversity: A synthesis of early results from a large-scale project. Appl. Veg. Sci. 15, 264–276 (2012).

    Article 

    Google Scholar 

  • Sojneková, M. & Chytrý, M. From arable land to species-rich semi-natural grasslands: Succession in abandoned fields in a dry region of central Europe. Ecol. Eng. 77, 373–381 (2015).

    Article 

    Google Scholar 

  • Ellis, E. C. et al. Used planet: A global history. Proc. Natl. Acad. Sci. USA 110, 7978–7985 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Levers, C., Schneider, M., Prishchepov, A. V., Estel, S. & Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total Environ. 644, 95–111 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501. https://doi.org/10.1038/s41467-021-22702-2 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Perpiña Castillo, C. et al. Agricultural Land Abandonment in the EU within 2015–2030 (No: JRC113718) (Joint Research Centre (Seville site), 2018).

  • Müller, D., Leitão, P. J. & Sikor, T. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agric. Syst. 117, 66–77 (2013).

    Article 

    Google Scholar 

  • Prishchepov, A. V., Müller, D., Dubinin, M., Baumann, M. & Radeloff, V. C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 30, 873–884 (2013).

    Article 

    Google Scholar 

  • Prishchepov, A. V., Schierhorn, F. & Löw, F. Unraveling the diversity of trajectories and drivers of global agricultural land abandonment. Land 10, 97 (2021).

    Article 

    Google Scholar 

  • Bossuyt, B. & Honnay, O. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J. Veg. Sci. 19, 875–884 (2008).

    Article 

    Google Scholar 

  • Humphries, T., Florentine, S., Dowling, K., Turville, C. & Sinclair, S. Weed management for landscape scale restoration of global temperate grasslands. Land Degrad. Dev. 32, 1090–1102 (2021).

    Article 

    Google Scholar 

  • Valkó, O. et al. Dynamics in vegetation and seed bank composition highlight the importance of post-restoration management in sown grasslands. Restor. Ecol. 29, e13192. https://doi.org/10.1111/rec.13192 (2021).

    Article 

    Google Scholar 

  • Valkó, O. et al. High-diversity sowing in establishment gaps: A promising new tool for enhancing grassland biodiversity. Tuexenia 36, 359–378 (2016).

    Google Scholar 

  • Kövendi-Jakó, A. et al. Three years of vegetation development worth 30 years of secondary succession in urban-industrial grassland restoration. Appl. Veg. Sci. 22, 138–149 (2019).

    Article 

    Google Scholar 

  • Kiss, R. et al. Establishment gaps in species-poor grasslands: Artificial biodiversity hotspots to support the colonization of target species. Restor. Ecol. 29, e13135. https://doi.org/10.1111/rec.13135 (2021).

    Article 

    Google Scholar 

  • Török, P., Vida, E., Deák, B., Lengyel, S. & Tóthmérész, B. Grassland restoration on former croplands in Europe: An assessment of applicability of techniques and costs. Biodivers. Conserv. 20, 2311–2332 (2011).

    Article 

    Google Scholar 

  • Critchley, C. N. R., Fowbert, J. A., Sherwood, A. J. & Pywell, R. F. Vegetation development of sown grass margins in arable fields under a countrywide agri-environment scheme. Biol. Conserv. 132, 1–11 (2006).

    Article 

    Google Scholar 

  • Wagner, M., Walker, K. J. & Pywell, R. F. Seed bank dynamics in restored grassland following the sowing of high-and low-diversity seed mixtures. Restor. Ecol. 26, S189–S199 (2018).

    Article 

    Google Scholar 

  • Lepš, J. et al. Long-term effectiveness of sowing high and low diversity seed mixtures to enhance plant community development on ex-arable fields. Appl. Veg. Sci. 10, 97–110 (2007).

    Google Scholar 

  • Török, P. et al. Restoring grassland biodiversity: Sowing low diversity seed mixtures can lead to rapid favourable changes. Biol. Conserv. 148, 806–812 (2010).

    Article 

    Google Scholar 

  • Schaub, S. et al. The costs of diversity: Higher prices for more diverse grassland seed mixtures. Environ. Res. Lett. 16, 094011. https://doi.org/10.1088/1748-9326/ac1a9c (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Werner, C. M., Vaughn, K. J., Stuble, K. L., Wolf, K. & Young, T. P. Persistent asymmetrical priority effects in a California grassland restoration experiment. Ecol. Appl. 26, 1624–1632 (2016).

    Article 

    Google Scholar 

  • Williams, D. W., Jackson, L. L. & Smith, D. D. Effects of frequent mowing on survival and persistence of forbs seeded into a species-poor grassland. Restor. Ecol. 15, 24–33 (2007).

    Article 

    Google Scholar 

  • Klaus, V. H. et al. Enriching plant diversity in grasslands by large-scale experimental sward disturbance and seed addition along gradients of land-use intensity. J. Plant Ecol. 10, 581–591 (2017).

    Google Scholar 

  • Kiss, R. et al. Zoochory on and off: A field experiment for trait-based analysis of establishment success of grassland species. J. Veg. Sci. 32, e13051. https://doi.org/10.1111/jvs.13051 (2021).

    Article 

    Google Scholar 

  • Weidlich, E. W. A. et al. Priority effects and ecological restoration. Restor. Ecol. 29, e13317. https://doi.org/10.1111/rec.13317 (2021).

    Article 

    Google Scholar 

  • Wilsey, B. Restoration in the face of changing climate: Importance of persistence, priority effects, and species diversity. Restor. Ecol. 29, e13132. https://doi.org/10.1111/rec.13132 (2021).

    Article 

    Google Scholar 

  • von Gillhaussen, P. et al. Priority effects of time of arrival of plant functional groups override sowing interval or density effects: A grassland experiment. PLoS ONE 9, e86906. https://doi.org/10.1371/journal.pone.0086906 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Eddy, K. C. & Van Auken, O. W. Priority effects allow Coreopsis tinctoria to avoid interspecific competition with a C4 grass. Am. Midl. Nat. 181, 104–114 (2019).

    Article 

    Google Scholar 

  • Delory, B. M., Weidlich, E. W., von Gillhaussen, P. & Temperton, V. M. When history matters: The overlooked role of priority effects in grassland overyielding. Funct. Ecol. 33, 2369–2380 (2019).

    Article 

    Google Scholar 

  • Fenner, M. The effects of the parent environment on seed germinability. Seed Sci. Res. 1, 75–84 (1991).

    Article 

    Google Scholar 

  • Ruprecht, E., Donath, T. W., Otte, A. & Eckstein, R. L. Chemical effects of a dominant grass on seed germination of four familial pairs of dry grassland species. Seed Sci. Res. 18, 239–248 (2008).

    Article 

    Google Scholar 

  • Partzsch, M., Faulhaber, M. & Meier, T. The effect of the dominant grass Festuca rupicola on the establishment of rare forbs in semi-dry grasslands. Folia Geobot. 53, 103–113 (2018).

    Article 

    Google Scholar 

  • Fenesi, A., Kelemen, K., Sándor, D. & Ruprecht, E. Influential neighbours: Seeds of dominant species affect the germination of common grassland species. J. Veg. Sci. 31, 1028–1038 (2020).

    Article 

    Google Scholar 

  • Garbowski, M. et al. Getting to the root of restoration: Considering root traits for improved restoration outcomes under drought and competition. Restor. Ecol. 28, 1384–1395 (2020).

    Article 

    Google Scholar 

  • Rehling, F., Sandner, T. M. & Matthies, D. Biomass partitioning in response to intraspecific competition depends on nutrients and species characteristics: A study of 43 plant species. J. Ecol. 109, 2219–2233 (2021).

    Article 

    Google Scholar 

  • Gross, K. L. & Mittelbach, G. G. Negative effects of fertilization on grassland species richness are stronger when tall clonal species are present. Folia Geobot. 52, 401–409 (2017).

    Article 

    Google Scholar 

  • Bakker, J. P. & Berendse, F. Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends Ecol. Evol. 14, 63–68 (1999).

    Article 
    CAS 

    Google Scholar 

  • Kiss, R., Valkó, O., Tóthmérész, B. & Török, P. Seed bank research in Central-European grasslands: An overview. In Seed Banks: Types Roles and Research (ed. Murphy, J.) 1–34 (Nova Science Publishers, 2016).

    Google Scholar 

  • Prach, K., Jongepierová, I. & Řehounková, K. Large-scale restoration of dry grasslands on ex-arable land using a regional seed mixture: Establishment of target species. Restor. Ecol. 21, 33–39 (2013).

    Article 

    Google Scholar 

  • Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).

    Article 

    Google Scholar 

  • Baskin, C. C. & Baskin, J. M. Seeds: Ecology, Biogeography, And Evolution of Dormancy and Germination (Academic Press, 1998).

    Google Scholar 

  • Kövendi-Jakó, A. et al. Effect of seed storing duration and sowing year on the seedling establishment of grassland species in xeric environments. Restor. Ecol. 29, e13209. https://doi.org/10.1111/rec.13209 (2020).

    Article 

    Google Scholar 

  • Cevallos, D., Szitár, K., Halassy, M., Kövendi-Jakó, A. & Török, K. Larger seed mass predicts higher germination and emergence rates in sand grassland species with non-dormant seeds. Acta Bot. Hung. 64, 237–258 (2022).

    Article 

    Google Scholar 

  • Leishman, M. R., Wright, I. J., Moles, A. T. & Westoby, M. The evolutionary ecology of seed size. In Seeds: The Ecology of Regeneration in Plant Communities (ed. Fenner, M.) 31–57 (CAB International, 2000).

    Chapter 

    Google Scholar 

  • Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Evol. Syst. 33, 125–215 (2002).

    Article 

    Google Scholar 

  • Moles, A. T. & Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006).

    Article 

    Google Scholar 

  • Scotton, M. Seed production in grassland species: Morpho-biological determinants in a species-rich semi-natural grassland. Grass Forage Sci. 73, 764–776 (2018).

    Article 

    Google Scholar 

  • Thompson, K., Bakker, J. P. & Bekker, R. M. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity (Cambridge University Press, 1997).

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • ENSCONET (European Native Seed Conservation Network). ENSCONET Seed Collecting Manual for Wild Species. ENSCONET, Royal Botanic Gardens, Kew and Universidad Politécnica de Madrid (2009). http://www.kew.org/sites/default/files/ENSCONET_Collecting_protocol_English.pdf. Accessed 15 April 2014).

  • Borhidi, A. Social behaviour types, the naturalness and relative indicator values of the higher plants in the Hungarian flora. Acta Bot. Hung. 39, 97–181 (1995).

    Google Scholar 

  • Király, G. (ed). Új magyar füvészkönyv. Magyarország hatásos növényei (New Hungarian Herbal. The Vascular Plants of Hungary. Identification Key) [in Hungarian]. (Aggtelek National Park Directorate, 2009).

  • R Core Team. R: A Language and Environment for Statistical Computing (4.0.5). Computer Software. R Foundation for Statistical Computing. https://www.R-project.org (2021).

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means (Version 1.3.4) [R]. https://CRAN.R-project.org/package=emmeans (2019).


  • Source: Ecology - nature.com

    Oldest DNA reveals 2-million-year-old ecosystem

    Decarbonization amid global crises