in

Coastal upwelling generates cryptic temperature refugia

  • Ackerly, D. D. et al. The geography of climate change: Implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).

    Google Scholar 

  • Lawton, J. H. Are there general laws in ecology?. Oikos 84, 177–192 (1999).

    Google Scholar 

  • Simberloff, D. Community ecology: Is it time to move on?. Am. Nat. 163, 787–799 (2004).

    PubMed 

    Google Scholar 

  • Ricklefs, R. E. Disintegration of the ecological community. Am. Nat. 172, 741–750 (2008).

    PubMed 

    Google Scholar 

  • McGill, B. J. et al. Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).

    PubMed 

    Google Scholar 

  • Paine, R. T. The Pisaster-Tegula interaction: Prey patches, predator food preference, and intertidal community structure. Ecology 50, 950–961 (1969).

    Google Scholar 

  • Dayton, P. K. Competition, disturbance, and community organization: The provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41, 351–389 (1971).

    Google Scholar 

  • Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).

    Google Scholar 

  • Brose, U., Berlow, E. L. & Martinez, N. D. Scaling up keystone effects from simple to complex ecological networks. Ecol. Lett. 8, 1317–1325 (2005).

    Google Scholar 

  • Stouffer, D. B. & Bascompte, J. Understanding food-web persistence from local to global scales. Ecol. Lett. 13, 154–161 (2010).

    PubMed 

    Google Scholar 

  • Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. 100, 12765–12770 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Google Scholar 

  • Holyoak, M., Leibold, M. A. & Holt, R. D. Metacommunities: Spatial Dynamics and Ecological Communities (University of Chicago Press, 2005).

    Google Scholar 

  • Gotelli, N. J. Macroecological signals of species interactions in the Danish avifauna. Proc. Natl. Acad. Sci. USA. 107, 5030–5035 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gouhier, T. C., Guichard, F. & Menge, B. A. Ecological processes can synchronize marine population dynamics over continental scales. Proc. Natl. Acad. Sci. 107, 8281–8286 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salois, S. L., Gouhier, T. C. & Menge, B. A. The multifactorial effects of dispersal on biodiversity in environmentally forced metacommunities. Ecosphere 9, e02357 (2018).

    Google Scholar 

  • Helmuth, B. et al. Beyond long-term averages: Making biological sense of a rapidly changing world. Clim. Change Responses 1, 6 (2014).

    Google Scholar 

  • Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215 (2015).

    ADS 

    Google Scholar 

  • Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378 (2016).

    ADS 

    Google Scholar 

  • Rilov, G. et al. Adaptive marine conservation planning in the face of climate change: What can we learn from physiological, ecological and genetic studies?. Glob. Ecol. Conserv. 17, e00566 (2019).

    Google Scholar 

  • Hampe, A. Bioclimate envelope models: What they detect and what they hide. Glob. Ecol. Biogeogr. 13, 469–471 (2004).

    Google Scholar 

  • Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Google Scholar 

  • Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    PubMed 

    Google Scholar 

  • Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Araújo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic envelope modeling. Ecology 93, 1527–1539 (2012).

    PubMed 

    Google Scholar 

  • Helmuth, B. et al. Mosaic patterns of thermal stress in the rocky intertidal zone: Implications for climate change. Ecol. Monogr. 76, 461–479 (2006).

    Google Scholar 

  • Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: Forecasting the responses of rocky intertidal ecosystems to climate change. Annu. Rev. Ecol. Evol. Syst. 37, 373–404 (2006).

    Google Scholar 

  • Vasseur, D. A. et al. Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems. Proc. R. Soc. B Biol. Sci. 281, 20140633 (2014).

    Google Scholar 

  • Dillon, M. E. et al. Life in the frequency domain: The biological impacts of changes in climate variability at multiple time scales. Integr. Comp. Biol. icw024 (2016).

  • Kroeker, K. J. et al. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol. Lett. 19, 771–779 (2016).

    PubMed 

    Google Scholar 

  • Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Understanding complex biogeographic responses to climate change. Sci. Rep. 5, (2015).

  • Di Cecco, G. J. & Gouhier, T. C. Increased spatial and temporal autocorrelation of temperature under climate change. Sci. Rep. 8, 14850 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Google Scholar 

  • Morelli, T. L. et al. Climate change refugia and habitat connectivity promote species persistence. Clim. Change Responses 4, 8 (2017).

    Google Scholar 

  • Bates, A. E. et al. Biologists ignore ocean weather at their peril. Nature 560, 299–301 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change (2015).

  • Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240 (1969).

    Google Scholar 

  • Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).

    Google Scholar 

  • Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).

    Google Scholar 

  • Hannah, L. et al. Fine-grain modeling of species’ response to climate change: Holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390–397 (2014).

    PubMed 

    Google Scholar 

  • Barceló, C., Ciannelli, L. & Brodeur, R. D. Pelagic marine refugia and climatically sensitive areas in an eastern boundary current upwelling system. Glob. Change Biol. 24, 668–680 (2018).

    ADS 

    Google Scholar 

  • Dong, Y. et al. Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proc. R. Soc. B Biol. Sci. 284, 20162367 (2017).

    Google Scholar 

  • Smit, A. J. et al. A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely-sensed data sets around the Coast of South Africa. PLoS ONE 8, e81944 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castro, S. L., Monzon, L. A., Wick, G. A., Lewis, R. D. & Beylkin, G. Subpixel variability and quality assessment of satellite sea surface temperature data using a novel High Resolution Multistage Spectral Interpolation (HRMSI) technique. Remote Sens. Environ. 217, 292–308 (2018).

    ADS 

    Google Scholar 

  • Rahaghi, A. I., Lemmin, U. & Barry, D. A. Surface water temperature heterogeneity at subpixel satellite scales and its effect on the surface cooling estimates of a large lake: Airborne remote sensing results from Lake Geneva. J. Geophys. Res. Oceans 124, 635–651 (2019).

    ADS 

    Google Scholar 

  • Pfister, C. A., Wootton, J. T. & Neufeld, C. J. The relative roles of coastal and oceanic processes in determining physical and chemical characteristics of an intensively sampled nearshore system. Limnol. Oceanogr. 52, 1767–1775 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Meneghesso, C. et al. Remotely-sensed L4 SST underestimates the thermal fingerprint of coastal upwelling. Remote Sens. Environ. 237, 111588 (2020).

    ADS 

    Google Scholar 

  • Leichter, J. J., Helmuth, B. & Fischer, A. M. Variation beneath the surface: Quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. J. Mar. Res. 64, 563–588 (2006).

    Google Scholar 

  • Castillo, K. D. & Lima, F. P. Comparison of in situ and satellite-derived (MODIS-Aqua/Terra) methods for assessing temperatures on coral reefs. Limnol. Oceanogr. Methods 8, 107–117 (2010).

    Google Scholar 

  • Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Lourenço, C. R. et al. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J. Biogeogr. 43, 1595–1607 (2016).

    Google Scholar 

  • Seabra, R. et al. Reduced nearshore warming associated with eastern boundary upwelling systems. Front. Mar. Sci. 6, (2019).

  • Randall, C. J., Toth, L. T., Leichter, J. J., Maté, J. L. & Aronson, R. B. Upwelling buffers climate change impacts on coral reefs of the eastern tropical Pacific. Ecology 101, (2020).

  • Varela, R., Lima, F. P., Seabra, R., Meneghesso, C. & Gómez-Gesteira, M. Coastal warming and wind-driven upwelling: A global analysis. Sci. Total Environ. 639, 1501–1511 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schulz, K. G., Hartley, S. & Eyre, B. Upwelling amplifies ocean acidification on the east Australian shelf: Implications for marine ecosystems. Front. Mar. Sci. 6, (2019).

  • Connell, J. H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42, 710–723 (1961).

    Google Scholar 

  • Somero, G. N. Linking biogeography to physiology: Evolutionary and acclimatory adjustments of thermal limits. Front. Zool. 2, 1 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sydeman, W. J. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sweijd, N. A. & Smit, A. J. Trends in sea surface temperature and chlorophyll-a in the seven African Large Marine Ecosystems. Environ. Dev. 36, 100585 (2020).

    Google Scholar 

  • Wang, D., Gouhier, T. C., Menge, B. A. & Ganguly, A. R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lima, F. P. & Wethey, D. S. Robolimpets: measuring intertidal body temperatures using biomimetic loggers: Biomimetic loggers for intertidal temperatures. Limnol. Oceanogr. Methods 7, 347–353 (2009).

    Google Scholar 

  • Judge, R., Choi, F. & Helmuth, B. Recent advances in data logging for intertidal ecology. Front. Ecol. Evol. 6, (2018).

  • Harley, C. D. G. & Helmuth, B. S. T. Local- and regional-scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation. Limnol. Oceanogr. 48, 1498–1508 (2003).

    ADS 

    Google Scholar 

  • Seabra, R., Wethey, D. S., Santos, A. M., Gomes, F. & Lima, F. P. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature. Glob. Change Biol. 22, 3320–3331 (2016).

    ADS 

    Google Scholar 

  • Lima, F. P. et al. Loss of thermal refugia near equatorial range limits. Glob. Change Biol. 22, 254–263 (2016).

    ADS 

    Google Scholar 

  • Tapia, F. J. et al. Thermal indices of upwelling effects on inner-shelf habitats. Prog. Oceanogr. 83, 278–287 (2009).

    ADS 

    Google Scholar 

  • Freeman, E. et al. ICOADS release 3.0: A major update to the historical marine climate record. Int. J. Climatol. 37, 2211–2232 (2017).

    Google Scholar 

  • Lemos, R. T. & Pires, H. O. The upwelling regime off the West Portuguese Coast, 1941–2000. Int. J. Climatol. 24, 511–524 (2004).

    Google Scholar 

  • Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Side matters: Microhabitat influence on intertidal heat stress over a large geographical scale. J. Exp. Mar. Biol. Ecol. 400, 200–208 (2011).

    Google Scholar 

  • Legendre, P. Species associations: The Kendall coefficient of concordance revisited. J. Agric. Biol. Environ. Stat. 10, 226–245 (2005).

    Google Scholar 

  • Gouhier, T. C. & Guichard, F. Synchrony: Quantifying variability in space and time. Methods Ecol. Evol. 5, 524–533 (2014).

    Google Scholar 

  • Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    ADS 

    Google Scholar 

  • Cazelles, B. et al. Wavelet analysis of ecological time series. Oecologia 156, 287–304 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • Recknagel, F., Ostrovsky, I., Cao, H., Zohary, T. & Zhang, X. Ecological relationships, thresholds and time-lags determining phytoplankton community dynamics of Lake Kinneret, Israel elucidated by evolutionary computation and wavelets. Ecol. Model. 255, 70–86 (2013).

    CAS 

    Google Scholar 

  • Mislan, K. A. S., Helmuth, B. & Wethey, D. S. Geographical variation in climatic sensitivity of intertidal mussel zonation: Biogeography of climatic sensitivity. Glob. Ecol. Biogeogr. 23, 744–756 (2014).

    Google Scholar 

  • Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).

    ADS 

    Google Scholar 

  • Cazelles, B. & Stone, L. Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol. 72, 953–968 (2003).

    Google Scholar 

  • Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).

    Google Scholar 

  • Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. 281, 20132612–20132612 (2014).

    Google Scholar 

  • Potter, K. A., Woods, H. A. & Pincebourde, S. Microclimatic challenges in global change biology. Glob. Change Biol. 19, 2932–2939 (2013).

    ADS 

    Google Scholar 

  • Sandel, B. et al. The influence of late quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).

    Google Scholar 

  • Morelli, T. L. et al. Managing climate change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stenseth, N. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).

    PubMed 

    Google Scholar 

  • Helmuth, B. et al. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Sci. Data 3, 160087 (2016).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wikelski, M. & Cooke, S. J. Conservation physiology. Trends Ecol. Evol. 21, 38–46 (2006).

    PubMed 

    Google Scholar 

  • Helmuth, B. S. T. & Hofmann, G. E. Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol. Bull. 201, 374–384 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Kearney, M. Habitat, environment and niche: What are we modelling?. Oikos 115, 186–191 (2006).

    Google Scholar 

  • Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).

    Google Scholar 

  • Maggs, C. A. et al. Evaluating signatures of glacial refugia for North Atlantic Benthic Marine Taxa. Ecology 89, S108–S122 (2008).

    PubMed 

    Google Scholar 

  • Bennett, K. & Provan, J. What do we mean by ‘refugia’?. Quat. Sci. Rev. 27, 2449–2455 (2008).

    ADS 

    Google Scholar 

  • Ashcroft, M. B., Chisholm, L. A. & French, K. O. Climate change at the landscape scale: predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Glob. Change Biol. 15, 656–667 (2009).

    ADS 

    Google Scholar 

  • Hofmann, G. E. et al. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakun, A. et al. Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Curr. Clim. Change Rep. 1, 85–93 (2015).

    Google Scholar 

  • Iles, A. C. et al. Climate-driven trends and ecological implications of event-scale upwelling in the California Current System. Glob. Change Biol. 18, 783–796 (2012).

    ADS 

    Google Scholar 

  • García-Reyes, M. et al. Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems. Front. Mar. Sci. 2, (2015).

  • Liebhold, A., Koenig, W. D. & Bjørnstad, O. N. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 467–490 (2004).

  • Amarasekare, P. & Nisbet, R. M. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am. Nat. 158, 572–584 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Adler, F. R. & Nuernberger, B. Persistence in patchy irregular landscapes. Theor. Popul. Biol. 45, 41–75 (1994).

    MATH 

    Google Scholar 

  • Rykaczewski, R. R. et al. Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 42, 6424–6431 (2015).

    ADS 

    Google Scholar 

  • Varela, R., Rodríguez-Díaz, L., de Castro, M. & Gómez-Gesteira, M. Influence of Canary upwelling system on coastal SST warming along the 21st century using CMIP6 GCMs. Glob. Planet. Change 208, 103692 (2022).

    Google Scholar 

  • Ocean deoxygenation: everyone’s problem. Causes, impacts, consequences and solutions. (IUCN, International Union for Conservation of Nature, 2019). https://doi.org/10.2305/IUCN.CH.2019.13.en.

  • Howard, E. M. et al. Climate-driven aerobic habitat loss in the California Current System. Sci. Adv. 6, eaay3188 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iles, A. C. Toward predicting community-level effects of climate: Relative temperature scaling of metabolic and ingestion rates. Ecology 95, 2657–2668 (2014).

    Google Scholar 

  • Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579 (2018).

    ADS 

    Google Scholar 

  • Salinas, S., Irvine, S. E., Schertzing, C. L., Golden, S. Q. & Munch, S. B. Trait variation in extreme thermal environments under constant and fluctuating temperatures. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180177 (2019).

    Google Scholar 

  • Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).

    ADS 

    Google Scholar 

  • Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT PhD students shed light on important water and food research

    Surprising effects of cascading higher order interactions