in

Comparative metagenomics reveals expanded insights into intra- and interspecific variation among wild bee microbiomes

  • Engel, M. S. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). Am. Mus. Novit. 3296, 1–11 (2000).

    Article 

    Google Scholar 

  • Michener, C. D. The Bees of the World 2nd edn, (John Hopkins University Press, 2007).

  • Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 274, 303–313 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Fürst, M., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • McMahon, D. P., Wilfert, L., Paxton, R. J. & Brown, M. J. F. Emerging viruses in bees: from molecules to ecology. Adv. Virus Res. 101, 251–291 (2015).

    Article 

    Google Scholar 

  • Koch, H., Abrol, D. P., Li, J. & Schmid-Hempel, P. Diversity of evolutionary patterns of bacterial gut associates of corbiculate bees. Mol. Ecol. 22, 2028–2044 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McFrederick, Q. S. et al. Environment or kin: whence do bees obtain acidophilic bacteria? Mol. Ecol. 21, 1754–1768 (2012).

    PubMed 
    Article 

    Google Scholar 

  • McFrederick, Q. S., Wcislo, W. T., Hout, M. C. & Mueller, U. G. Host species and developmental stage, but not host social structure, affects bacterial community structure in social polymorphic bees. FEMS Microbiol. Ecol. 88, 398–406 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McFrederick, Q. S. et al. Flowers and wild megachilid bees share microbes. Microb. Ecol. 73, 188–200 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Jones, J. C. et al. The gut microbiome is associated with behavioural task in honey bees. Insectes Sociaux 65, 419–429 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kristensen, T. N., Schonherz, A., Rohde, P. D., Sorensen, J. G. & Loeschcke, V. Strong experimental support for the hologenome hypothesis revealed from Drosophila melanogaster selection lines. bioRxiv https://doi.org/10.1101/2021.09.09.459587 (2021)

  • Bovo, S., Utzeri, V. J., Ribani, A., Cabbri, R. & Fontanesi, L. Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. Sci. Rep. 10, 1–17 (2020).

    Article 
    CAS 

    Google Scholar 

  • Dharampal, P. S., Carlson, C., Currie, C. R. & Steffan, S. A. Pollen-borne microbes shape bee fitness. Proc. R. Soc. B. 286, 20182894 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Graystock, P., Rehan, S. M. & McFrederick, Q. S. Hunting for healthy microbiomes: determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conserv. Genet. 18, 701–711 (2017).

    Article 

    Google Scholar 

  • Engel, P. et al. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio 7, e02164–15 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Voulgari-Kokota, A., McFrederick, Q. S., Steffan-Dewenter, I. & Keller, A. Drivers, diversity, and functions of the solitary-bee microbiota. Trends Microbiol 27, 1034–1044 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rothman, J. A., Leger, L., Graystock, P., Russell, K. & McFrederick, Q. S. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ. Microbiol. 21, 3417–3429 (2019).

    CAS 
    Article 

    Google Scholar 

  • Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. PNAS 109, 11002–11007 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Engel, P. & Moran, N. A. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4, 60–65 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, e1600513 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Breeze, T. D., Bailey, A. P., Balcombe, K. G. & Potts, S. G. Pollination services in the UK: How important are honeybees? Agric. Ecosyst. Environ. 142, 137–143 (2011).

    Article 

    Google Scholar 

  • Dharampal, P. S., Hetherington, M. C. & Steffan, S. A. Microbes make the meal: oligolectic bees require microbes within their host pollen to thrive. Ecol. Entomol. 45, 1418–1427 (2020).

    Article 

    Google Scholar 

  • Keller, A. et al. (More than) hitchhikers through the network: the shared microbiome of bees and flowers. Curr. Opin. Insect 44, 8–15 (2021).

    Article 

    Google Scholar 

  • Hugenholtz, P. & Tyson, G. W. Metagenomics. Nature 455, 481–483 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Galbraith, D. A. et al. Investigating the viral ecology of global bee communities with high- throughput metagenomics. Sci. Rep. 8, 8879 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Regan, T. et al. Characterisation of the British honey bee metagenome. Nat. Commun. 9, 1–13 (2018).

    CAS 
    Article 

    Google Scholar 

  • Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLOS ONE 13, e0205575 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Schoonvaere, K. et al. Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses. PLOS ONE 11, e0168456 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rehan, S. M., Leys, R. & Schwarz, M. P. A mid-cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes. PLOS ONE 7, e34690 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rehan, S. M. Small carpenter bees (Ceratina). Encyclopedia of Social Insects (ed Chris, S.) (Springer, 2020).

  • Sakagami, S. F. & Maeta, Y. Multifemale nests and rudimentary castes in the normally solitary bee Ceratina japonica (Hymenoptera: Xylocopinae). J. Kans. Entomol. 57, 639–656 (1984).

    Google Scholar 

  • Huisken, J. L., Shell, W. A., Pare, H. K. & Rehan, S. M. The influence of social environment on cooperating and conflict in an incipiently social bee, Ceratina calcarata. Behav. Ecol. 75, 74 (2021).

    Article 

    Google Scholar 

  • Rehan, S. M., Glastad, K. M., Lawson, S. P. & Hunt, B. G. The genome and methylome of a subsocial small carpenter bee, Ceratina calcarata. GBE 8, 1401–1410 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rehan, S. M. et al. Conserved genes underlie phenotypic plasticity in an incipiently social bee. GBE 10, 2749–2758 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arsenault, S. V., Hunt, B. G. & Rehan, S. M. The effect of maternal care on gene expression and DNA methylation in a subsocial bee. Nat. Commun. 9, 3468 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Shell, W. A. et al. Sociality sculpts similar patterns of molecular evolution in two independently evolved lineages of eusocial bees. Comms. Biol. 4, 1–9 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dew, R. M., McFrederick, Q. S. & Rehan, S. M. Diverse diets with consistent core microbiome in wild bee pollen provisions. Insects 11, 49 (2020).

    Article 

    Google Scholar 

  • Lawson, S. P., Kennedy, K. & Rehan, S. M. Pollen composition significantly impacts development and survival of the native small carpenter bee, Ceratina calcarata. Ecol. Entomol. 46, 232–239 (2021).

    Article 

    Google Scholar 

  • Oppenheimer, R. L., Shell, W. A. & Rehan, S. M. Phylogeography and population genetics of the Australian small carpenter bee, Ceratina australensis. Biol. J. Linn. Soc. 124, 747–755 (2018).

    Article 

    Google Scholar 

  • McFrederick, Q. S. & Rehan, S. M. Wild bee pollen usage and microbial communities co- vary across landscapes. Microb. Ecol. 77, 513–522 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Rehan, S. M., Richards, M. H. & Schwarz, M. P. Sociality in the Australian small carpenter bee Ceratina (Neoceratina) australensis. Insectes Sociaux 57, 403–412 (2010).

    Article 

    Google Scholar 

  • Harpur, B. A. & Rehan, S. M. Connecting social polymorphism to single nucleotide polymorphism: population genomics of the small carpenter bee, Ceratina australensis. Biol. J. Linn. Soc. 132, 945–954 (2021).

    Article 

    Google Scholar 

  • Neu, A. T., Allen, E. E. & Roy, K. Defining and quantifying the core microbiome: challenges and prospects. PNAS 118, e2104429118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lawson, S. P., Ciaccio, K. N. & Rehan, S. M. Maternal manipulation of pollen provisions affects worker production in a small carpenter bee. Behav. Ecol. 70, 1891–1900 (2016).

    Article 

    Google Scholar 

  • Ganeshprasad, D. N., Jani, K., Shouche, Y. S. & Sneharani, A. H. Gut bacterial inhabitants of open nested honey bee, Apis florea. Preprint at https://assets.researchsquare.com/files/rs-225332/v1/ddf21abe-2456-4f45-af61-4ba3e81d16e7.pdf?c=1641312753 (2021).

  • Rothman, J. A., Cox-Foster, D. L., Andrikopoulos, C. & McFrederick, Q. S. Diet breadth affects bacterial identity but not diversity in the pollen provisions of closely related polylectic and oligolectic bees. Insects 11, 1–13 (2020).

    Article 

    Google Scholar 

  • Cohen, H., McFrederick, Q. S. & Philpott, S. M. Environment shapes the microbiome of the blue orchard bee, Osmia lignaria. Microb. Ecol. 80, 897–907 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Dew, R. M., Rehan, S. M. & Schwarz, M. P. Biogeography and demography of an Australian native bee Ceratina australensis (Hymenoptera: Apidae) since the last glacial maximum. J. Hymenopt. Res. 49, 25–41 (2016).

    Article 

    Google Scholar 

  • Pinto-Tomás, A. A. et al. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326, 1120–1123 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Walterson, A. M. & Stavrinides, J. Pantoea insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 39, 968–984 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scheiner, R., Strauß, S., Thamm, M., Farré-Armengol, G. & Junker, R. R. The bacterium Pantoea ananatis modifies behavioral responses to sugar solutions in honeybees. Insects 11, 692 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • Leonhardt, S. D. & Kaltenpoth, M. Microbial communities of three sympatric Australian stingless bee species. Plos ONE 9, e105718 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bailey, L. & Ball, B. V. Honey Bee Pathology (Academic Press, 1991).

  • Tham, V. L. Isolation of Streptococcus pluton from the larvae of European honey bees in Australia. Aust. Vet. J. 54, 406–407 (1978).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bowman, J. The genus Flavobacterium. Prokaryotes 7, 481–531 (2006).

    Google Scholar 

  • Voordouw, G. The genus Desulovibrio: The centennial. Appl. Environ. Microbiol. 61, 2813–2819 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Singaravelen, N., Nee’man, G., Inbar, M. & Izhaki, I. Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. J. Chem. Ecol. 31, 2791–2804 (2005).

    Article 
    CAS 

    Google Scholar 

  • Baracchi, D., Marples, A., Jenkins, A. J., Leitch, A. R. & Chittka, L. Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Sci. Rep. 7, 1951 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Adler, L. S. & Irwin, R. E. Ecological costs and benefits of defenses in nectar. Ecology 86, 2968–2978 (2005).

    Article 

    Google Scholar 

  • Bally, J. et al. Nicotiana paulineana, a new Australian species in Nicotiana section Suaveolentes. Aust. Syst. Bot. 34, 477–484 (2021).

    Article 

    Google Scholar 

  • Coenye, T. & Vandamme, P. Diversity and significance of Burkholderia species occupying diverse ecology niches. Environ. Microbiol. 5, 719–729 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Levy, A., Merritt, A. J., Aravena-Roman, M., Hodge, M. M. & Inglis, T. J. J. Expanded range of Burkholderia species in Australia. Am. J. Trop. Med. Hyg. 78, 599–604 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kaltenpoth, M. & Flórez, L. V. Versatile and dynamic symbioses between insects and Burkholderia bacteria. Annu. Rev. Entomol. 65, 145–170 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Foley, K., Fazio, G., Jensen, A. B. & Hughes, W. O. H. Nutritional limitation and resistance to opportunistic Aspergillus parasites in honey bee larvae. J. Invertebr. Pathol. 111, 68–73 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Yoder, J. A. et al. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies. J. Toxicol. Environ. Health Part A 76, 587–600 (2013).

    CAS 
    Article 

    Google Scholar 

  • Yun, J.-H., Jung, M.-J., Kim, P. S. & Bae, J.-W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 1–11 (2018).

    Google Scholar 

  • Dew, R. M., Silva, D. P. & Rehan, S. M. Range expansion of an already widespread bee under climate change. GECCO 17, e00584 (2019).

    Google Scholar 

  • Cambra, M., Capote, N. & Myrta, A. & Llácer, G. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull. 36, 202–204 (2006).

    Article 

    Google Scholar 

  • Roberts, J. M. K., Ireland, K. B., Tay, W. T. & Paini, D. Honey bee-assisted surveillance for early plant virus detection. Ann. Appl. Biol. 173, 285–293 (2018).

    CAS 
    Article 

    Google Scholar 

  • Elliott, B. et al. Pollen diets and niche overlap of honey bees and native bees in protected areas. BAAE 50, 169–180 (2021).

    Google Scholar 

  • Porrini, C. et al. Use of honey bees as bioindicators of environmental pollution in Italy. in Honey bees: estimating the environmental impact of chemicals (eds Devillers, J. & Pham-Delegue, M.-H.) (Taylor & Francis Press, 2002).

  • Kennedy, P., Higginson, A. D., Radford, A. N. & Sumner, S. Altruism in a volatile world. Nature 555, 359–362 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rubin, B. E. R., Sanders, J. G., Turner, K. M., Pierce, N. E. & Kocher, S. D. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. R. Soc. Open Sci. 5, 180369 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mohr, K. I. & Tebbe, C. C. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ. Microbiol. 8, 258–272 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 26, 97–104 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Amin, F. A. Z. et al. Probiotic properties of Bacillus strains isolated from stingless bee (Heterotrigona itama) honey collected across Malaysia. Int. J. Envrion. Res. Public Health 17, 1–15 (2020).

    Google Scholar 

  • Takeshita, K. & Kikuchi, Y. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations. Res. Microbiol. 168, 175–187 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).

    PubMed 
    Article 

    Google Scholar 

  • D’Alvise, P. et al. The impact of winter feed type on intestinal microbiota and parasites in honey bees. Apidologie 49, 252–264 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, L. et al. Dynamic changes of gut microbial communities of bumble bee queens through important life stages. mSystems 4, e00631–19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kapheim, K. M., Johnson, M. M. & Jolley, M. Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees. Sci. Rep. 11, 2993 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Abdelazez, A. et al. Potential benefits of Lactobacillus plantarum as probiotic and its advantages in human health and industrial applications: A review. Adv. Environ. Biol. 12, 16–27 (2018).

    CAS 

    Google Scholar 

  • Frese, S. A. et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 7, e1001314 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Duar, R. M. et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Tejerina, M. R., Cabana, M. J. & Benitez-Ahrendts, M. R. Strains of Lactobacillus spp. reduce chalkbrood in Apis mellifera. J. Invertebr. Pathol. 178, 107521 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vásquez, A. et al. Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLOS ONE 7, e33188 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Voulgari-Kokota, A., Steffan-Dewenter, I. & Keller, A. Susceptibility of red mason bee larvae to bacterial threats due to microbiome exchange with imported pollen provisions. Insects 11, 1–14 (2020).

    Article 

    Google Scholar 

  • Steffan, S. A. et al. Omnivory in bees: Elevated trophic positions among all major bee families. Am. Nat. 194, 414–421 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Hurst, P. S. Social biology of Exoneurella tridentata, an allodapine bee with morphological castes and perennial colonies. Unpublished D. Phil. Thesis (Flinders University, 2001).

  • Chalita, M. et al. Improved metagenomic taxonomic profiling using a curated core gene- based bacterial database reveals unrecognized species in the genus Streptococcus. Pathogens 9, 204 (2021).

    Article 

    Google Scholar 

  • Rehan, S. M. & Toth, A. L. Climbing the social ladder: molecular evolution of sociality. Trends Ecol. Evol. 30, 426–433 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Shell, W. A. & Rehan, S. M. Behavioral and genetic mechanisms of social evolution: insights from incipiently and facultatively social bees. Apidologie 49, 13–30 (2018).

    CAS 
    Article 

    Google Scholar 

  • Kirby, K. S. Isolation and characterization of ribosomal ribonucleic acid. Biochem. J. 96, 266–269 (1956).

    Article 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2019).

    Article 
    CAS 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tsilimigras, M. C. B. & Fodor, A. A. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann. Epidemiol. 26, 330–335 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824–834 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oksanen, J. et al. Package ‘vegan’. Community Ecology package, version 2, 1–295 (2013).

  • Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    Google Scholar 

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mina, R., Haixu, T. & Yuzhen, Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191 (2010).

    Article 
    CAS 

    Google Scholar 

  • Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article 
    CAS 

    Google Scholar 

  • Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9, 599 (2008).

    Article 
    CAS 

    Google Scholar 

  • Langfelder, P. & Horvath, S. Tutorials for the WGCNA package. https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/ (2016).

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).

    Google Scholar 

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article 

    Google Scholar 

  • Paluszynska, A. Structure mining and knowledge extraction from random forest with applications to The Cancer Genome Atlas project. Master’s Thesis (University of Warsaw, 2017).


  • Source: Ecology - nature.com

    Population dynamics of synanthropic rodents after a chemical and infrastructural intervention in an urban low-income community

    Gridded maps of wetlands dynamics over mid-low latitudes for 1980–2020 based on TOPMODEL