in

Composition and metabolic potential of microbiomes associated with mesopelagic animals from Monterey Canyon

[adace-ad id="91168"]
  • McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hammer TJ, Sanders JG, Fierer N. Not all animals need a microbiome. FEMS Microbiol Lett. 2019;366:fnz117.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bagge LE, Osborn KJ, Johnsen S. Nanostructures and monolayers of spheres reduce surface reflections in hyperiid amphipods. Curr Biol. 2016;26:3071–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Apprill A. Marine animal microbiomes: toward understanding host–microbiome interactions in a changing ocean. Front Mar Sci. 2017;4:222.

    Article 

    Google Scholar 

  • Wilkins LGE, Leray M, O’Dea A, Yuen B, Peixoto RS, Pereira TJ, et al. Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol. 2019;17:e3000533.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, et al. The sponge microbiome project. GigaScience. 2017;6:gix077.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Oppen MJH, Blackall LL. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol. 2019;17:557–67.

    Article 
    PubMed 

    Google Scholar 

  • Henehan MJ, Hull PM, Penman DE, Rae JWB, Schmidt DN. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Phil Trans R Soc B. 2016;371:20150510.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Corte D, Srivastava A, Koski M, Garcia JAL, Takaki Y, Yokokawa T, et al. Metagenomic insights into zooplankton-associated bacterial communities. Environ Microbiol. 2018;20:492–505.

    Article 
    PubMed 

    Google Scholar 

  • Egerton S, Culloty S, Whooley J, Stanton C, Ross RP. The gut microbiota of marine fish. Front Microbiol. 2018;9:873.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott JJ, Adam TC, Duran A, Burkepile DE, Rasher DB. Intestinal microbes: an axis of functional diversity among large marine consumers. Proc R Soc B. 2020;287:20192367.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D, McCarthy JJ, et al. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun. 2015;6:8285.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Preheim SP, Boucher Y, Wildschutte H, David LA, Veneziano D, Alm EJ, et al. Metapopulation structure of Vibrionaceae among coastal marine invertebrates. Environ Microbiol. 2011;13:265–75.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol. 2012;21:3363–78.

    Article 
    PubMed 

    Google Scholar 

  • Huang Q, Sham RC, Deng Y, Mao Y, Wang C, Zhang T, et al. Diversity of gut microbiomes in marine fishes is shaped by host‐related factors. Mol Ecol. 2020;29:5019–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Webb TJ, Vanden Berghe E, O’Dor R. Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE. 2010;5:e10223.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Irigoien X, Klevjer TA, Røstad A, Martinez U, Boyra G, Acuña JL, et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat Commun. 2014;5:3271.

    Article 
    PubMed 

    Google Scholar 

  • Drazen JC, Sutton TT. Dining in the deep: the feeding ecology of deep-sea fishes. Annu Rev Mar Sci. 2017;9:337–66.

    Article 

    Google Scholar 

  • Boyd PW, Claustre H, Levy M, Siegel DA, Weber T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature. 2019;568:327–35.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Klevjer TA, Irigoien X, Røstad A, Fraile-Nuez E, Benítez-Barrios VM, Kaartvedt S. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci Rep. 2016;6:19873.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davison PC, Checkley DM, Koslow JA, Barlow J. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog Oceanogr. 2013;116:14–30.

    Article 

    Google Scholar 

  • Steinberg DK, Landry MR. Zooplankton and the ocean carbon cycle. Annu Rev Mar Sci. 2017;9:413–44.

    Article 

    Google Scholar 

  • Stenvers VI, Hauss H, Osborn KJ, Neitzel P, Merten V, Scheer S, et al. Distribution, associations and role in the biological carbon pump of Pyrosoma atlanticum (Tunicata, Thaliacea) off Cabo Verde, NE Atlantic. Sci Rep. 2021;11:9231.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson C, Steinberg DK, Anderson TR, Aristegui J, Carlson CA, Frost JR, et al. Mesopelagic zone ecology and biogeochemistry–a synthesis. Deep Sea Res II. 2010;57:1504–18.

    Article 
    CAS 

    Google Scholar 

  • Iacuaniello CM. An examination of intestinal microbiota of mesopelagic fish reveals microbial community diversity across fish families. Master’s Thesis, University of California San Diego. 2019.

  • Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.

    Article 
    PubMed 

    Google Scholar 

  • Bernal A, Olivar MP, Maynou F, Fernández de Puelles ML. Diet and feeding strategies of mesopelagic fishes in the western Mediterranean. Prog Oceanogr. 2015;135:1–17.

    Article 

    Google Scholar 

  • Bollens SM, Frost BW, Lin TS. Recruitment, growth, and diel vertical migration of Euphausia pacifica in a temperate fjord. Mar Biol. 1992;114:219–28.

    Article 

    Google Scholar 

  • Hoving HJT, Neitzel P, Hauss H, Christiansen S, Kiko R, Robison BH, et al. In situ observations show vertical community structure of pelagic fauna in the eastern tropical North Atlantic off Cape Verde. Sci Rep. 2020;10:21798.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Judkins H, Vecchione M. Vertical distribution patterns of cephalopods in the northern Gulf of Mexico. Front Mar Sci. 2020;7:47.

    Article 

    Google Scholar 

  • Miya M, Nemoto T. Reproduction, growth and vertical distribution of the meso- and bathypelagic fish Cyclothone atraria (Pisces: Gonostomatidae) in Sagami Bay, Central Japan. Deep Sea Res I. 1987;34:1565–77.

    Article 

    Google Scholar 

  • Osborn KJ. Phylogenetics and ecology of pelagic munnopsid isopods (Crustacea, Asellota). Dissertation, University of California Berkeley. 2007.

  • Pearcy WG, Forss CA. Depth distribution of oceanic shrimps (Decapoda; Natantia) off Oregon. J Fish Res Bd Can. 1966;23:1135–43.

    Article 

    Google Scholar 

  • Russell FS. The vertical distribution of marine macroplankton. An observation on diurnal changes. J Mar Biol Ass. 1925;13:769–809.

    Article 

    Google Scholar 

  • Watanabe H, Moku M, Kawaguchi K, Ishimaru K, Ohno A. Diel vertical migration of myctophid fishes (family Myctophidae) in the transitional waters of the western North Pacific. Fish Oceanogr. 1999;8:115–27.

    Article 

    Google Scholar 

  • Madin LP. Gelatinous grazers: an underestimated force in ocean carbon cycles. 4th International Zooplankton Production Symposium, May 28–June 1. Hiroshima, Japan. 2007.

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN. Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes. 2007;7:544–8.

    Article 
    CAS 

    Google Scholar 

  • Geller J, Meyer C, Parker M, Hawk H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all‐taxa biotic surveys. Mol Ecol Resour. 2013;13:851–61.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool. 2013;10:34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 2013;41:D590–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robeson MS II, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, et al. RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comput Biol. 2021;17:e1009581.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ, et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems. 2018;3:e00021–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMurdie PJ, Holmes S. phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria; 2021.

  • Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Knight R, Knights D. SHOGUN: a modular, accurate and scalable framework for microbiome quantification. Bioinformatics. 2020;36:4088–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Ghalith G, Knights D. Faster and lower-memory metagenomic profiling with UTree. https://doi.org/10.5281/zenodo.998252.

  • Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol. 2016;7:459.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DeWitt FA, Cailliet GM. Feeding habits of two bristlemouth fishes, Cyclothone acclinidens and C. signata (Gonostomatidae). Copeia. 1972;1972:868.

    Article 

    Google Scholar 

  • Fauchald K, Jumars PA. The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Annu Rev. 1979;17:193–284.

    Google Scholar 

  • Flock ME, Hopkins TL. Species composition, vertical distribution, and food habits of the sergestid shrimp assemblage in the eastern Gulf of Mexico. J Crustacean Biol. 1992;12:210–23.

    Article 

    Google Scholar 

  • Uttal L, Buck KR. Dietary study of the midwater polychaete Poeobius meseres in Monterey Bay, California. Mar Biol. 1996;125:333–43.

    Article 

    Google Scholar 

  • Tanimata N, Yamamura O, Sakurai Y, Azumaya T. Dietary shift and feeding intensity of Stenobrachius leucopsarus in the Bering Sea. J Oceanogr. 2008;64:185–94.

    Article 

    Google Scholar 

  • Hoving HJT, Robison BH. Vampire squid: detritivores in the oxygen minimum zone. Proc R Soc B. 2012;279:4559–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berning M. The feeding ecology of two species of holopelagic munnopsid isopods from the North Pacific (Acanthamunnopsis milleri and Munneurycope murrayi) using SEM analysis. Honors Thesis, Florida State University. 2014.

  • Du X, Peterson W. Feeding rates and selectivity of adult Euphausia pacifica on natural particle assemblages in the coastal upwelling zone off Oregon, USA, 2010. J Plankton Res. 2014;36:1031–46.

    Article 

    Google Scholar 

  • Henschke N, Everett JD, Richardson AJ, Suthers IM. Rethinking the role of salps in the ocean. Trends Ecol Evol. 2016;31:720–33.

    Article 
    PubMed 

    Google Scholar 

  • Gruber-Vodicka HR, Seah BKB, Pruesse E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems. 2020;5:e00920–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karlicki M, Antonowicz S, Karnkowska A. Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics. 2022;38:344–50.

    Article 
    CAS 

    Google Scholar 

  • Levy Karin E, Mirdita M, Söding J. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome. 2020;8:48

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH.UniProt Consortium UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015;31:926–32.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chamberlain SA, Szöcs E. taxize: taxonomic search and retrieval in R. F1000Res. 2013;2:191.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol Evol. 2019;10:389–400.

    Article 

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2020.

  • Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Molnár K, Ostoros G, Dunams-Morel D, Rosenthal B. Eimeria that infect fish are diverse and are related to, but distinct from, those that infect terrestrial vertebrates. Infect Genet Evol. 2012;12:1810–5.

    Article 
    PubMed 

    Google Scholar 

  • Domozych D. Algal cell walls. In: John Wiley & Sons, Ltd, editor. eLS. 1st ed. Wiley, Hoboken, NJ; 2019. p. 1–11.

  • Gallet A, Koubbi P, Léger N, Scheifler M, Ruiz-Rodriguez M, Suzuki MT, et al. Low-diversity bacterial microbiota in Southern Ocean representatives of lanternfish genera Electrona, Protomyctophum and Gymnoscopelus (family Myctophidae). PLoS ONE. 2019;14:e0226159.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reji L, Tolar BB, Chavez FP, Francis CA. Depth-differentiation and seasonality of planktonic microbial assemblages in the Monterey Bay upwelling system. Front Microbiol. 2020;11:1075.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Corte D, Lekunberri I, Sintes E, Garcia J, Gonzales S, Herndl G. Linkage between copepods and bacteria in the North Atlantic Ocean. Aquat Microb Ecol. 2014;72:215–25.

    Article 

    Google Scholar 

  • Russell SL. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett. 2019;366:fnz013.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Akbar S, Li X, Ding Z, Liu Q, Huang J, Zhou Q, et al. Disentangling diet- and medium-associated microbes in shaping Daphnia gut microbiome. Microb Ecol. 2022;84:911–21. https://doi.org/10.1007/s00248-021-01900-x.

  • Eckert EM, Anicic N, Fontaneto D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol Ecol. 2021;30:1545–58.

    Article 
    PubMed 

    Google Scholar 

  • Rakusa-Suszczewski S. Predation of chaetognatha by Tomopteris helgolandica Greff. ICES J Mar Sci. 1968;32:226–31.

    Article 

    Google Scholar 

  • Aldredge AL, Silver MW. Characteristics, dynamics and significance of marine snow. Prog Oceanogr. 1988;20:41–82.

    Article 

    Google Scholar 

  • Jumars PA, Dorgan KM, Lindsay SM. Diet of worms emended: an update of polychaete feeding guilds. Ann Rev Mar Sci. 2015;7:497–520.

    Article 
    PubMed 

    Google Scholar 

  • Pfenning-Butterworth A, Cooper RO, Cressler CE. Daily feeding rhythm linked to microbiome composition in two zooplankton species. PLoS ONE. 2022;17:e0263538.

  • Pappalardo P, Collins AG, Pagenkopp Lohan KM, Hanson KM, Truskey SB, et al. The role of taxonomic expertise in interpretation of metabarcoding studies. ICES J Mar Sci. 2021;78:3397–410.

    Article 

    Google Scholar 

  • Hunt DE, Gevers D, Vahora NM, Polz MF. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol. 2008;74:44–51.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Turner JT. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr. 2015;130:205–48.

    Article 

    Google Scholar 

  • Chavez FP. Forcing and biological impact of onset of the 1992 El Niño in central California. Geophys Res Lett. 1996;23:265–8.

    Article 

    Google Scholar 

  • Pennington TJ, Chavez FP. Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989-96 in Monterey Bay, California. Deep Sea Res II. 2000;47:947–73.

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Machinery of the state

    Extinction magnitude of animals in the near future