Schendel, V., Rash, L. D., Jenner, R. A. & Undheim, E. A. The diversity of venom: The importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins 11(11), 666 (2019).
Google Scholar
Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A. & Fry, B. G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 28(4), 219–229 (2013).
Google Scholar
Pineda, S. S. et al. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc. Natl. Acad. Sci. USA 117(21), 11399–11408 (2020).
Google Scholar
Chippaux, J. P., Williams, V. & White, J. Snake venom variability: Methods of study, results and interpretation. Toxicon 29(11), 1279–1303 (1991).
Google Scholar
Lyons, K., Dugon, M. M. & Healy, K. Diet breadth mediates the prey specificity of venom potency in snakes. Toxins 12(2), 74 (2020).
Google Scholar
Pekár, S. et al. Venom gland size and venom complexity—essential trophic adaptations of venomous predators: A case study using spiders. Mol. Ecol. 27(21), 4257–4269 (2018).
Google Scholar
Phuong, M. A., Mahardika, G. N. & Alfaro, M. E. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genom. 17(1), 401 (2016).
Google Scholar
Holding, M. L., Biardi, J. E. & Gibbs, H. L. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proc. R. Soc. B. 283(1829), 20152841 (2016).
Google Scholar
Pekár, S., Líznarová, E., Bočánek, O. & Zdráhal, Z. Venom of prey-specialized spiders is more toxic to their preferred prey: A result of prey-specific toxins. J. Anim. Ecol. 87(6), 1639–1652 (2018).
Google Scholar
Pekár, S., Coddington, J. A. & Blackledge, T. A. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution 66(3), 776–806 (2012).
Google Scholar
Herzig, V., King, G. F. & Undheim, E. A. Can we resolve the taxonomic bias in spider venom research?. Toxicon: X 1, 100005 (2019).
Google Scholar
Platnick, N. A relimitation and revision of the Australasian ground spider family Lamponidae (Araneae: Gnaphosoidea). Bull. Am. Mus. Nat. Hist. 2000(245), 1–328 (2000).
Google Scholar
World Spider Catalog. Version 22.0. Natural History Museum Bern. http://wsc.nmbe.ch. Accessed 15 Mar 2021 (2021).
White, J. & Weinstein, S. A. A phoenix of clinical toxinology: White-tailed spider (Lampona spp.) bites. A case report and review of medical significance. Toxicon 87, 76–80 (2014).
Google Scholar
Rash, L. D., King, R. G. & Hodgson, W. C. Sex differences in the pharmacological activity of venom from the white-tailed spider (Lampona cylindrata). Toxicon 38, 1111–1127 (2000).
Google Scholar
Young, A. R. & Pincus, S. J. Comparison of enzymatic activity from three species of necrotising arachnids in Australia: Loxosceles rufescens, Badumna insignis and Lampona cylindrata. Toxicon 39, 391–400 (2001).
Google Scholar
Michálek, O., Petráková, L. & Pekár, S. Capture efficiency and trophic adaptations of a specialist and generalist predator: A comparison. Ecol. Evol. 7(8), 2756–2766 (2017).
Google Scholar
Klint, J. K. et al. Spider-venom peptides that target voltage-gated sodium channels: Pharmacological tools and potential therapeutic leads. Toxicon 60(4), 478–491 (2012).
Google Scholar
Diniz, M. R. et al. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE 13(8), e0200628 (2018).
Google Scholar
Wilson, D. et al. The aromatic head group of spider toxin polyamines influences toxicity to cancer cells. Toxins 9(11), 346 (2017).
Google Scholar
Herzig, V. & King, G. F. The cystine knot is responsible for the exceptional stability of the insecticidal spider toxin ω-hexatoxin-Hv1a. Toxins 7(10), 4366–4380 (2015).
Google Scholar
Wang, X. H. et al. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat. Struct. Biol. 7(6), 505–513 (2000).
Google Scholar
Yuan, C. H. et al. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS ONE 3(10), e3414 (2008).
Google Scholar
Luo, J. et al. Molecular diversity and evolutionary trends of cysteine-rich peptides from the venom glands of Chinese spider Heteropoda venatoria. Sci. Rep. 11, 3211 (2021).
Google Scholar
Cole, J., Buszka, P. A., Mobley, J. A. & Hataway, R. A. Characterization of the venom proteome for the wandering spider, Ctenus hibernalis (Aranea: Ctenidae). J. Proteom. Bioinform. 9, 196–199 (2016).
Google Scholar
Korolkova, Y. et al. New Insectotoxin from Tibellus Oblongus Spider venom presents novel daptation of ICK Fold. Toxins 13(1), 29 (2021).
Google Scholar
Koua, D. et al. Proteotranscriptomic insights into the venom composition of the wolf spider Lycosa tarantula. Toxins 12(8), 501 (2020).
Google Scholar
Liberato, T., Troncone, L. R. P., Yamashiro, E. T., Serrano, S. M. & Zelanis, A. High-resolution proteomic profiling of spider venom: Expanding the toxin diversity of Phoneutria nigriventer venom. Amino Acids 48(3), 901–906 (2016).
Google Scholar
Oldrati, V. et al. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS ONE 12(3), e0172966 (2017).
Google Scholar
King, G. F. & Hardy, M. C. Spider-venom peptides: Structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 58, 475–496 (2013).
Google Scholar
Turner, A. J., Isaac, R. E. & Coates, D. The neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and function. BioEssays 23(3), 261–269 (2001).
Google Scholar
Casewell, N. R., Harrison, R. A., Wüster, W. & Wagstaff, S. C. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts. BMC Genom. 10(1), 1–12 (2009).
Google Scholar
Tan, C. H., Tan, K. Y., Fung, S. Y. & Tan, N. H. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah). BMC Genom. 16(1), 1–21 (2015).
Google Scholar
Tan, K. Y., Tan, C. H., Chanhome, L. & Tan, N. H. Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: Elucidating geographical venom variation and insights into sequence novelty. PeerJ 5, e3142 (2017).
Google Scholar
Undheim, E. A. et al. A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittame loki (brush-foot trapdoor). Toxins. 5(12), 2488–2503 (2013).
Google Scholar
do Nascimento, S. M., de Oliveira, U. C., Nishiyama-Jr, M. Y., Tashima, A. K. & Silva Junior, P. I. D. Presence of a neprilysin on Avicularia juruensis (Mygalomorphae: Theraphosidae) venom. Toxin Rev. 41(2), 370–379 (2021).
Google Scholar
Zobel-Thropp, P. A. et al. Not so dangerous after all? Venom composition and potency of the Pholcid (daddy long-leg) spider Physocyclus mexicanus. Front. Ecol. Evol. 7, 256 (2019).
Google Scholar
Diniz, M. R. et al. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE 13(8), e0200628 (2018).
Google Scholar
He, Q. et al. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS ONE 8(11), e81357 (2013).
Google Scholar
Haney, R. A., Ayoub, N. A., Clarke, T. H., Hayashi, C. Y. & Garb, J. E. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genom. 15(1), 1–18 (2014).
Google Scholar
Haney, R. A., Matte, T., Forsyth, F. S. & Garb, J. E. Alternative transcription at venom genes and its role as a complementary mechanism for the generation of venom complexity in the common house spider. Front. Ecol. Evol. 7, 85 (2019).
Google Scholar
Lüddecke, T. et al. An economic dilemma between molecular weapon systems may explain an arachno-atypical venom in wasp spiders (Argiope bruennichi). Biomolecules 10(7), 978 (2020).
Google Scholar
Fainzilber, M., Gordon, D., Hasson, A., Spira, M. E. & Zlotkin, E. Mollusc-specific toxins from the venom of Conus textile neovicarius. Eur. J. Biochem. 202(2), 589–595 (1991).
Google Scholar
Pawlak, J. et al. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J. Biol. Chem. 281(39), 29030–29041 (2006).
Google Scholar
Krasnoperov, V. G., Shamotienko, O. G. & Grishin, E. V. Isolation and properties of insect and crustacean-specific neurotoxins from the venom of the black widow spider (Latrodectus mactans tredecimguttatus). J. Nat. Toxins 1, 17–23 (1992).
Google Scholar
Xu, X. et al. A comparative analysis of the venom gland transcriptomes of the fishing spiders Dolomedes mizhoanus and Dolomedes sulfurous. PLoS ONE 10(10), e0139908 (2015).
Google Scholar
Kuzmenkov, A. I., Sachkova, M. Y., Kovalchuk, S. I., Grishin, E. V. & Vassilevski, A. A. Lachesana tarabaevi, an expert in membrane-active toxins. Biochem. J. 473(16), 2495–2506 (2016).
Google Scholar
Pekár, S. & Toft, S. Trophic specialisation in a predatory group: The case of prey-specialised spiders (Araneae). Biol. Rev. 90(3), 744–761 (2015).
Google Scholar
Nyffeler, M. & Pusey, B. J. Fish predation by semi-aquatic spiders: A global pattern. PLoS ONE 9(6), e99459 (2014).
Google Scholar
Pekár, S. & Lubin, Y. Prey and predatory behavior of two zodariid species (Araneae, Zodariidae). J. Arachnol. 37(1), 118–121 (2009).
Google Scholar
Michálek, O., Kuhn-Nentwig, L. & Pekár, S. High specific efficiency of venom of two prey-specialized spiders. Toxins 11(12), 687 (2019).
Google Scholar
Modahl, C. M., Mrinalini, Frietze, S. & Mackessy, S. P. Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom. Proc. R. Soc. B. 285(1884), 20181003 (2018).
Google Scholar
Harris, R. J., Zdenek, C. N., Harrich, D., Frank, N. & Fry, B. G. An appetite for destruction: Detecting prey-selective binding of α-neurotoxins in the venom of Afro-Asian elapids. Toxins 12(3), 205 (2020).
Google Scholar
Duran, L. H., Rymer, T. L. & Wilson, D. T. Variation in venom composition in the Australian funnel-web spiders Hadronyche valida. Toxicon: X 8, 100063 (2020).
Google Scholar
Kuhn-Nentwig, L., Schaller, J. & Nentwig, W. Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae: Ctenidae). Toxicon 32(3), 287–302 (1994).
Google Scholar
Friedel, T. & Nentwig, W. Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle. Toxicon 27(3), 305–316 (1989).
Google Scholar
Eggs, B., Wolff, J. O., Kuhn-Nentwig, L., Gorb, S. N. & Nentwig, W. Hunting without a web: How lycosoid spiders subdue their prey. Ethology 121(12), 1166–1177 (2015).
Google Scholar
Andrews, S. FastQC: A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2015).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014).
Google Scholar
Song, L. & Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4(1), s13742–s14015 (2015).
Google Scholar
Grabherr, M. G. et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29(7), 644 (2011).
Google Scholar
Gilbert, D. EvidentialGene: Evidence directed gene predictions for eukaryotes. Available online at: http://arthropods.eugenes.org/EvidentialGene/ (2010).
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3), 1–10 (2009).
Google Scholar
Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness. In Gene Prediction (ed. Kollmar, M.) 227–245 (Humana, 2019).
Haas, B. TransDecoder. Available online at: https://github.com/TransDecoder/TransDecoder (2015).
Petersen, T. N., Brunak, S., Von Heijne, G. & Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8(10), 785–786 (2011).
Google Scholar
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997).
Google Scholar
UniProt. The universal protein knowledgebase in 2021. Nucleic Acids Res. 49(1), 480–489 (2021).
Eddy, S. R. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput. Biol. 4(5), e1000069 (2008).
Google Scholar
Finn, R. D. et al. Pfam: The protein families database. Nucleic Acids Res. 42(1), 222–230 (2014).
Google Scholar
Wong, E. S., Hardy, M. C., Wood, D., Bailey, T. & King, G. F. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula. PLoS ONE 8(7), e66279 (2013).
Google Scholar
King, G. F., Gentz, M. C., Escoubas, P. & Nicholson, G. M. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 52(2), 264–276 (2008).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: https://www.R-project.org/ (2019).
Venables, W. N. & Ripley, B. D. Random and mixed effects in Modern Applied Statistics with S 271–300 (Springer, New York, 2002).
Pekár, S. & Brabec, M. Modern Analysis of Biological Data: Generalized Linear Models in R (Masaryk University Press, 2016).
Halekoh, U., Højsgaard, S. & Yan, J. The R package geepack for generalized estimating equations. J. Stat. Softw. 15(2), 1–11 (2006).
Google Scholar
Pekár, S. & Brabec, M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology 124(2), 86–93 (2018).
Google Scholar
Source: Ecology - nature.com