in

Compound heat and moisture extreme impacts on global crop yields under climate change

[adace-ad id="91168"]
  • Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    Article 

    Google Scholar 

  • Frieler, K. et al. Understanding the weather signal in national crop-yield variability. Earths Future 5, 605–616 (2017).

    Article 

    Google Scholar 

  • Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).

    Article 

    Google Scholar 

  • Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

    Article 

    Google Scholar 

  • Ridder, N. N., Ukkola, A. M., Pitman, A. J. & Perkins-Kirkpatrick, S. E. Increased occurrence of high impact compound events under climate change. npj Clim. Atmos. Sci. 5, 3 (2022).

    Article 

    Google Scholar 

  • Lesk, C. & Anderson, W. Decadal variability modulates trends in concurrent heat and drought over global croplands. Environ. Res. Lett. 16, 055024 (2021).

    Article 

    Google Scholar 

  • Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D. & Diffenbaugh, N. S. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions. Sci. Adv. 4, eaau3487 (2018).

    Article 

    Google Scholar 

  • Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    Article 

    Google Scholar 

  • Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).

    Article 

    Google Scholar 

  • Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

    Article 

    Google Scholar 

  • Buckley, T. N. How do stomata respond to water status? New Phytol. 224, 21–36 (2019).

    Article 

    Google Scholar 

  • Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. NY Acad. Sci. 1436, 19–35 (2019).

    Article 

    Google Scholar 

  • Mueller, B. & Seneviratne, S. I. Hot days induced by precipitation deficits at the global scale. Proc. Natl Acad. Sci. USA 109, 12398–12403 (2012).

    Article 

    Google Scholar 

  • Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B. & Mittler, R. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol. Plant 171, 66–76 (2021).

    Article 

    Google Scholar 

  • Ostmeyer, T. et al. Impacts of heat, drought, and their interaction with nutrients on physiology, grain yield, and quality in field crops. Plant Physiol. Rep. 25, 549–568 (2020).

    Article 

    Google Scholar 

  • Matiu, M., Ankerst, D. P. & Menzel, A. Interactions between temperature and drought in global and regional crop yield variability during 1961–2014. PLoS ONE 12, e0178339 (2017).

    Article 

    Google Scholar 

  • Scheff, J., Mankin, J. S., Coats, S. & Liu, H. CO2-plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environ. Res. Lett. 16, 034018 (2021).

    Article 

    Google Scholar 

  • Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, e2020GL087820 (2020).

    Article 

    Google Scholar 

  • Allan, R. P. et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. NY Acad. Sci. 1472, 49–75 (2020).

    Article 

    Google Scholar 

  • Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).

    Article 

    Google Scholar 

  • Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).

    Article 

    Google Scholar 

  • Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change 10, 611–621 (2020).

    Article 

    Google Scholar 

  • Mills, G. et al. Closing the global ozone yield gap: quantification and cobenefits for multistress tolerance. Glob. Chang. Biol. 24, 4869–4893 (2018).

    Article 

    Google Scholar 

  • Pandey, P., Irulappan, V., Bagavathiannan, M. V. & Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 8, 537 (2017).

    Article 

    Google Scholar 

  • Couasnon, A. et al. Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Nat. Hazards Earth Syst. Sci. 20, 489–504 (2020).

    Article 

    Google Scholar 

  • Nguyen, L. T. T. et al. Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity. Plant Soil 431, 371–387 (2018).

    Article 

    Google Scholar 

  • Medrano, H., Escalona, J. M., Bota, J., Gulías, J. & Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann. Bot. 89, 895–905 (2002).

    Article 

    Google Scholar 

  • Scafaro, A. P. et al. Responses of leaf respiration to heatwaves. Plant Cell Environ. 44, 2090–2101 (2021).

    Article 

    Google Scholar 

  • Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).

    Article 

    Google Scholar 

  • Lukac, M., Gooding, M. J., Griffiths, S. & Jones, H. E. Asynchronous flowering and within-plant flowering diversity in wheat and the implications for crop resilience to heat. Ann. Bot. 109, 843–850 (2012).

    Article 

    Google Scholar 

  • Coast, O., Murdoch, A. J., Ellis, R. H., Hay, F. R. & Jagadish, K. S. V. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress. Plant. Cell Environ. 39, 26–37 (2016).

    Article 

    Google Scholar 

  • Li, Y., Guan, K., Schnitkey, G. D., Delucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14628 (2019).

    Article 

    Google Scholar 

  • Tian, L. X. et al. How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Sci. 12, 634898 (2021).

    Article 

    Google Scholar 

  • Langan, P. et al. Phenotyping for waterlogging tolerance in crops: current trends and future prospects. J. Exp. Bot. https://doi.org/10.1093/jxb/erac243 (2022).

    Article 

    Google Scholar 

  • Tong, C. et al. Opportunities for improving waterlogging tolerance in cereal crops — physiological traits and genetic mechanisms. Plants 10, 1560 (2021).

    Article 

    Google Scholar 

  • Colmer, T. D., Cox, M. C. H. & Voesenek, L. A. C. J. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol. 170, 767–778 (2006).

    Article 

    Google Scholar 

  • Hattori, Y. et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026–1030 (2009).

    Article 

    Google Scholar 

  • Prasad, P. V. V., Pisipati, S. R., Momčilović, I. & Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci. 197, 430–441 (2011).

    Article 

    Google Scholar 

  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203, 32–43 (2014).

    Article 

    Google Scholar 

  • Hussain, H. A. et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 9, 3890 (2019).

    Article 

    Google Scholar 

  • Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19 (2006).

    Article 

    Google Scholar 

  • Choudhury, F. K., Rivero, R. M., Blumwald, E. & Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867 (2017).

    Article 

    Google Scholar 

  • Van Der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R. & Screen, J. A. Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions. Environ. Res. Lett. 15, 034050 (2020).

    Article 

    Google Scholar 

  • Moore, C. E. et al. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72, 2822–2844 (2021).

    Article 

    Google Scholar 

  • Fahad, S. et al. Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. 8, 1147 (2017).

    Article 

    Google Scholar 

  • Zandalinas, S. I., Fritschi, F. B. & Mittler, R. Signal transduction networks during stress combination. J. Exp. Bot. 71, 1734–1741 (2020).

    Article 

    Google Scholar 

  • Zhang, H. & Sonnewald, U. Differences and commonalities of plant responses to single and combined stresses. Plant J. 90, 839–855 (2017).

    Article 

    Google Scholar 

  • Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

    Article 

    Google Scholar 

  • Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).

    Article 

    Google Scholar 

  • Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32, L14703 (2005).

    Article 

    Google Scholar 

  • Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C. & De Arellano, J. V. G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).

    Article 

    Google Scholar 

  • Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Article 

    Google Scholar 

  • Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article 

    Google Scholar 

  • Koster, R. D., Chang, Y., Wang, H. & Schubert, S. D. Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: a comprehensive analysis over North America. J. Clim. 29, 7345–7364 (2016).

    Article 

    Google Scholar 

  • Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).

    Article 

    Google Scholar 

  • Berg, A., Lintner, B., Findell, K. & Giannini, A. Soil moisture influence on seasonality and large-scale circulation in simulations of the West African monsoon. J. Clim. 30, 2295–2317 (2017).

    Article 

    Google Scholar 

  • Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).

    Article 

    Google Scholar 

  • Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).

    Article 

    Google Scholar 

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article 

    Google Scholar 

  • Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Article 

    Google Scholar 

  • Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).

    Article 

    Google Scholar 

  • Raymond, C. et al. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environ. Res. Lett. 17, 035005 (2022).

    Article 

    Google Scholar 

  • Raymond, C. et al. On the controlling factors for globally extreme humid heat. Geophys. Res. Lett. 48, e2021GL096082 (2021).

    Article 

    Google Scholar 

  • Speizer, S., Raymond, C., Ivanovich, C. & Horton, R. M. Concentrated and intensifying humid heat extremes in the IPCC AR6 regions. Geophys. Res. Lett. 49, e2021GL097261 (2022).

    Article 

    Google Scholar 

  • Ning, G. et al. Rising risks of compound extreme heat‐precipitation events in China. Int. J. Climatol. https://doi.org/10.1002/joc.7561 (2022).

    Article 

    Google Scholar 

  • Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 290 (2020).

    Article 

    Google Scholar 

  • Mueller, N. D. et al. Global relationships between cropland intensification and summer temperature extremes over the last 50 years. J. Clim. 30, 7505–7528 (2017).

    Article 

    Google Scholar 

  • Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H. & Graß, R. Impact of heat stress on crop yield — on the importance of considering canopy temperature. Environ. Res. Lett. 9, 044012 (2014).

    Article 

    Google Scholar 

  • Singh, D. et al. Distinct influences of land cover and land management on seasonal climate. J. Geophys. Res. Atmos. 123, 12017–12039 (2018).

    Article 

    Google Scholar 

  • Luan, X. & Vico, G. Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation — a modeling analysis. Hydrol. Earth Syst. Sci. 25, 1411–1423 (2021).

    Article 

    Google Scholar 

  • Siebert, S., Webber, H., Zhao, G. & Ewert, F. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environ. Res. Lett. 12, 054023 (2017).

    Article 

    Google Scholar 

  • Sinha, R. et al. Differential regulation of flower transpiration during abiotic stress in annual plants. New Phytol. https://doi.org/10.1111/nph.18162 (2022).

    Article 

    Google Scholar 

  • He, Y., Lee, E. & Mankin, J. S. Seasonal tropospheric cooling in Northeast China associated with cropland expansion. Environ. Res. Lett. 15, 034032 (2020).

    Article 

    Google Scholar 

  • Alter, R. E., Douglas, H. C., Winter, J. M. & Eltahir, E. A. B. Twentieth century regional climate change during the summer in the Central United States attributed to agricultural intensification. Geophys. Res. Lett. 45, 1586–1594 (2018).

    Article 

    Google Scholar 

  • Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: a review. Glob. Chang. Biol. 20, 408–417 (2014).

    Article 

    Google Scholar 

  • Prasad, P. V. V., Bheemanahalli, R. & Jagadish, S. V. K. Field crops and the fear of heat stress — opportunities, challenges and future directions. Field Crops Res. 200, 114–121 (2017).

    Article 

    Google Scholar 

  • Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).

    Article 

    Google Scholar 

  • Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).

    Article 

    Google Scholar 

  • Sadok, W. & Jagadish, S. V. K. The hidden costs of nighttime warming on yields. Trends Plant Sci. 25, 644–651 (2020).

    Article 

    Google Scholar 

  • Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).

    Article 

    Google Scholar 

  • Cook, B. I., Shukla, S. P., Puma, M. J. & Nazarenko, L. S. Irrigation as an historical climate forcing. Clim. Dyn. 44, 1715–1730 (2015).

    Article 

    Google Scholar 

  • Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Chang. Biol. 26, 3065–3078 (2020).

    Article 

    Google Scholar 

  • Entekhabi, B. D. et al. The Soil Moisture Active Passive (SMAP). IEEE Proc. 98, 704–716 (2010).

    Article 

    Google Scholar 

  • Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003 (2019).

    Article 

    Google Scholar 

  • Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).

    Article 

    Google Scholar 

  • Proctor, J., Rigden, A., Chan, D. & Huybers, P. Accurate specification of water availability shows its importance for global crop production. Preprint at EarthArXiv https://doi.org/10.31223/X5ZS7P (2021).

    Article 

    Google Scholar 

  • Carter, E. K., Melkonian, J., Riha, S. J. & Shaw, S. B. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 11, 094012 (2016).

    Article 

    Google Scholar 

  • Hamed, R., Van Loon, A. F., Aerts, J. & Coumou, D. Impacts of compound hot-dry extremes on US soybean yields. Earth Syst. Dyn. 12, 1371–1391 (2021).

    Article 

    Google Scholar 

  • Feng, S., Hao, Z., Zhang, X. & Hao, F. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Sci. Total Environ. 689, 1228–1234 (2019).

    Article 

    Google Scholar 

  • Haqiqi, I., Grogan, D. S., Hertel, T. W. & Schlenker, W. Quantifying the impacts of compound extremes on agriculture. Hydrol. Earth Syst. Sci. 25, 551–564 (2021).

    Article 

    Google Scholar 

  • Zhu, P., Zhuang, Q., Archontoulis, S. V., Bernacchi, C. & Müller, C. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Glob. Chang. Biol. 25, 2470–2484 (2019).

    Article 

    Google Scholar 

  • Jin, Z. et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Chang. Biol. 22, 3112–3126 (2016).

    Article 

    Google Scholar 

  • Filipa Silva Ribeiro, A., Russo, A., Gouveia, C. M., Páscoa, P. & Zscheischler, J. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences 17, 4815–4830 (2020).

    Article 

    Google Scholar 

  • Hsiao, J., Swann, A. L. S. & Kim, S. H. Maize yield under a changing climate: the hidden role of vapor pressure deficit. Agric. For. Meteorol. 279, 107692 (2019).

    Article 

    Google Scholar 

  • Heinicke, S., Frieler, K., Jägermeyr, J. & Mengel, M. Global gridded crop models underestimate yield responses to droughts and heatwaves. Environ. Res. Lett. 17, 044026 (2022).

    Article 

    Google Scholar 

  • Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).

    Article 

    Google Scholar 

  • He, Y., Hu, X., Xu, W., Fang, J. & Shi, P. Increased probability and severity of compound dry and hot growing seasons over world’s major croplands. Sci. Total Environ. 824, 153885 (2022).

    Article 

    Google Scholar 

  • Wu, Y. et al. Global observations and CMIP6 simulations of compound extremes of monthly temperature and precipitation. GeoHealth 5, e2021GH000390 (2021).

    Article 

    Google Scholar 

  • Zhang, Y., Hao, Z., Zhang, X. & Hao, F. Anthropogenically forced increases in compound dry and hot events at the global and continental scales. Environ. Res. Lett. 17, 024018 (2022).

    Article 

    Google Scholar 

  • Chen, Y., Liao, Z., Shi, Y., Tian, Y. & Zhai, P. Detectable increases in sequential flood-heatwave events across China during 1961–2018. Geophys. Res. Lett. 48, e2021GL092549 (2021).

    Google Scholar 

  • Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).

    Article 

    Google Scholar 

  • Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture–temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).

    Article 

    Google Scholar 

  • Garcia-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J. & Fischer, E. M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 40, 267–306 (2010).

    Article 

    Google Scholar 

  • Wegren, S. Food security and Russia’s 2010 drought. Eurasian Geogr. Econ. 52, 140–156 (2011).

    Article 

    Google Scholar 

  • Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A. & Xiao, X. Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environ. Res. Lett. 15, 094078 (2020).

    Article 

    Google Scholar 

  • Glotter, M. & Elliott, J. Simulating US agriculture in a modern Dust Bowl drought. Nat. Plants 3, 16193 (2016).

    Article 

    Google Scholar 

  • Yuan, X., Wang, L. & Wood, E. F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 99, S86–S90 (2018).

    Article 

    Google Scholar 

  • Ben-Ari, T. et al. Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nat. Commun. 9, 1627 (2018).

    Article 

    Google Scholar 

  • Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11, 772–779 (2021).

    Article 

    Google Scholar 

  • Iizumi, T. & Ramankutty, N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 11, 034003 (2016).

    Article 

    Google Scholar 

  • Brás, T. A., Seixas, J., Carvalhais, N. & Jagermeyr, J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 16, 065012 (2021).

    Article 

    Google Scholar 

  • Lobell, D. B., Deines, J. M. & Di Tommaso, S. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).

    Article 

    Google Scholar 

  • Seneviratne, S. I. et al. Climate extremes, land–climate feedbacks and land-use forcing at 1.5 °C. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20160450 (2018).

    Article 

    Google Scholar 

  • Pfleiderer, P., Schleussner, C. F., Kornhuber, K. & Coumou, D. Summer weather becomes more persistent in a 2 °C world. Nat. Clim. Change 9, 666–671 (2019).

    Article 

    Google Scholar 

  • Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).

    Article 

    Google Scholar 

  • Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Chang. Rep. 4, 301–312 (2018).

    Article 

    Google Scholar 

  • Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    Article 

    Google Scholar 

  • Lesk, C., Coffel, E. & Horton, R. Net benefits to US soy and maize yields from intensifying hourly rainfall. Nat. Clim. Change 10, 819–822 (2020).

    Article 

    Google Scholar 

  • Goulart, H. M. D., Van Der Wiel, K., Folberth, C., Balkovic, J. & Van Den Hurk, B. Weather-induced crop failure events under climate change: a storyline approach. Earth Syst. Dyn. https://doi.org/10.5194/esd-2021-40 (2021).

    Article 

    Google Scholar 

  • Franke, J. A. et al. Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change. Glob. Chang. Biol. 28, 167–181 (2022).

    Article 

    Google Scholar 

  • Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article 

    Google Scholar 

  • Waha, K. et al. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Chang. 64, 102131 (2020).

    Article 

    Google Scholar 

  • Zhu, T., Fonseca De Lima, C. F. & De Smet, I. The heat is on: how crop growth, development, and yield respond to high temperature. J. Exp. Bot. 72, 7359–7373 (2021).

    Google Scholar 

  • Lizaso, J. I. et al. Impact of high temperatures in maize: phenology and yield components. Field Crops Res. 216, 129–140 (2018).

    Article 

    Google Scholar 

  • Rezaei, E. E., Siebert, S. & Ewert, F. Intensity of heat stress in winter wheat — phenology compensates for the adverse effect of global warming. Environ. Res. Lett. 10, 024012 (2015).

    Article 

    Google Scholar 

  • Liu, K. et al. Climate change shifts forward flowering and reduces crop waterlogging stress. Environ. Res. Lett. 16, 094017 (2021).

    Article 

    Google Scholar 

  • Bagley, J. et al. The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Global Biogeochem. Cycles https://doi.org/10.1002/2014GB004848 (2015).

    Article 

    Google Scholar 

  • Hossain, M. A. et al. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255, 399–412 (2018).

    Article 

    Google Scholar 

  • Wolz, K. J., Wertin, T. M., Abordo, M., Wang, D. & Leakey, A. D. B. Diversity in stomatal function is integral to modelling plant carbon and water fluxes. Nat. Ecol. Evol. 1, 1292–1298 (2017).

    Article 

    Google Scholar 

  • Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Chang. Biol. 27, 27–49 (2021).

    Article 

    Google Scholar 

  • Toreti, A. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 1, 775–782 (2020).

    Article 

    Google Scholar 

  • Myers, S. S. et al. Climate change and global food systems: potential impacts on food security and undernutrition. Annu. Rev. Public Health 38, 259–277 (2017).

    Article 

    Google Scholar 

  • Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).

    Article 

    Google Scholar 

  • Houshmandfar, A., Fitzgerald, G. J., Armstrong, R., Macabuhay, A. A. & Tausz, M. Modelling stomatal conductance of wheat: an assessment of response relationships under elevated CO2. Agric. For. Meteorol. 214–215, 117–123 (2015).

    Article 

    Google Scholar 

  • Chavan, S. G., Duursma, R. A., Tausz, M. & Ghannoum, O. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J. Exp. Bot. 70, 6447–6459 (2019).

    Article 

    Google Scholar 

  • Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).

    Article 

    Google Scholar 

  • Coffel, E. D. et al. Future hot and dry years worsen Nile basin water scarcity despite projected precipitation increases. Earths Future 7, 967–977 (2019).

    Article 

    Google Scholar 

  • Mishra, V., Thirumalai, K., Singh, D. & Aadhar, S. Future exacerbation of hot and dry summer monsoon extremes in India. npj Clim. Atmos. Sci. 3, 10 (2020).

    Article 

    Google Scholar 

  • Bevacqua, E., Zappa, G., Lehner, F. & Zscheischler, J. Precipitation trends determine future occurrences of compound hot–dry events. Nat. Clim. Change 12, 350–355 (2022).

    Article 

    Google Scholar 

  • Seager, R. et al. Climate variability and change of Mediterranean-type climates. J. Clim. 32, 2887–2915 (2019).

    Article 

    Google Scholar 

  • Vogel, M. M., Hauser, M. & Seneviratne, S. I. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 15, 094021 (2020).

    Article 

    Google Scholar 

  • Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).

    Article 

    Google Scholar 

  • Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).

    Article 

    Google Scholar 

  • McDermid, S. S. et al. Disentangling the regional climate impacts of competing vegetation responses to elevated atmospheric CO2. J. Geophys. Res. Atmos. 126, e2020JD034108 (2021).

    Article 

    Google Scholar 

  • Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    Article 

    Google Scholar 

  • Ali, H., Fowler, H. J., Lenderink, G., Lewis, E. & Pritchard, D. Consistent large-scale response of hourly extreme precipitation to temperature variation over land. Geophys. Res. Lett. https://doi.org/10.1029/2020GL090317 (2021).

    Article 

    Google Scholar 

  • Dai, A., Rasmussen, R. M., Liu, C., Ikeda, K. & Prein, A. F. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim. Dyn. 55, 343–368 (2020).

    Article 

    Google Scholar 

  • Fishman, R. More uneven distributions overturn benefits of higher precipitation for crop yields. Environ. Res. Lett. 11, 024004 (2016).

    Article 

    Google Scholar 

  • Shortridge, J. Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Clim. Chang. 157, 429–444 (2019).

    Article 

    Google Scholar 

  • Guan, K., Sultan, B., Biasutti, M., Baron, C. & Lobell, D. B. What aspects of future rainfall changes matter for crop yields in West Africa? Geophys. Res. Lett. 42, 8001–8010 (2015).

    Article 

    Google Scholar 

  • Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl Acad. Sci. USA 115, 4863–4868 (2018).

    Article 

    Google Scholar 

  • Coffel, E. D., Horton, R. M. & De Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13, 014001 (2018).

    Article 

    Google Scholar 

  • Matthews, T. Humid heat and climate change. Prog. Phys. Geogr. 42, 391–405 (2018).

    Article 

    Google Scholar 

  • McKinnon, K. A. & Poppick, A. Estimating changes in the observed relationship between humidity and temperature using noncrossing quantile smoothing splines. J. Agric. Biol. Environ. Stat. 25, 292–314 (2020).

    Article 

    Google Scholar 

  • Parsons, L. A. et al. Global labor loss due to humid heat exposure underestimated for outdoor workers. Environ. Res. Lett. 17, 014050 (2022).

    Article 

    Google Scholar 

  • Ridder, N. N., Pitman, A. J. & Ukkola, A. M. Do CMIP6 climate models simulate global or regional compound events skillfully? Geophys. Res. Lett. 48, e2020GL091152 (2021).

    Article 

    Google Scholar 

  • Hao, Z., Aghakouchak, A. & Phillips, T. J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 8, 034014 (2013).

    Article 

    Google Scholar 

  • Zhang, B. & Soden, B. J. Constraining climate model projections of regional precipitation change. Geophys. Res. Lett. 46, 10522–10531 (2019).

    Article 

    Google Scholar 

  • Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    Article 

    Google Scholar 

  • Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).

    Article 

    Google Scholar 

  • Lombardozzi, D. L. et al. Simulating agriculture in the Community Land Model Version 5. J. Geophys. Res. Biogeosci. 125, e2019JG005529 (2020).

    Article 

    Google Scholar 

  • Puma, M. J. & Cook, B. I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. Atmos. 115, D16120 (2010).

    Article 

    Google Scholar 

  • Coffel, E. D., Lesk, C., Winter, J. M., Osterberg, E. C. & Mankin, J. S. Crop–climate feedbacks boost US maize and soy yields. Environ. Res. Lett. 17, 024012 (2022).

    Article 

    Google Scholar 

  • Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).

    Article 

    Google Scholar 

  • Zaveri, E. & B. Lobell, D. The role of irrigation in changing wheat yields and heat sensitivity in India. Nat. Commun. 10, 4144 (2019).

    Article 

    Google Scholar 

  • DeLucia, E. H. et al. Are we approaching a water ceiling to maize yields in the United States? Ecosphere 10, e02773 (2019).

    Article 

    Google Scholar 

  • Cook, B. I. et al. Divergent regional climate consequences of maintaining current irrigation rates in the 21st century. J. Geophys. Res. Atmos. 125, e2019JD031814 (2020).

    Article 

    Google Scholar 

  • Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. USA 115, 6644–6649 (2018).

    Article 

    Google Scholar 

  • Liu, W. et al. Future climate change significantly alters interannual wheat yield variability over half of harvested areas. Environ. Res. Lett. 16, 094045 (2021).

    Article 

    Google Scholar 

  • Wang, X. et al. Global irrigation contribution to wheat and maize yield. Nat. Commun. 12, 1235 (2021).

    Article 

    Google Scholar 

  • Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).

    Article 

    Google Scholar 

  • Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).

    Article 

    Google Scholar 

  • Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10, 452–458 (2020).

    Article 

    Google Scholar 

  • Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).

    Article 

    Google Scholar 

  • Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016).

    Article 

    Google Scholar 

  • Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).

    Article 

    Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M. F. P. & Van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    Article 

    Google Scholar 

  • Bhattarai, N. et al. The impact of groundwater depletion on agricultural production in India. Environ. Res. Lett. 16, 085003 (2021).

    Article 

    Google Scholar 

  • Nie, W. et al. Irrigation water demand sensitivity to climate variability across the contiguous United States. Water Resour. Res. 57, e2020WR027738 (2021).

    Article 

    Google Scholar 

  • Wu, W.-Y. et al. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 11, 3710 (2020).

    Article 

    Google Scholar 

  • Jain, M. et al. Groundwater depletion will reduce cropping intensity in India. Sci. Adv. 7, eabd2849 (2021).

    Article 

    Google Scholar 

  • Kerr, R. B., Hasegawa, T. & Lasco, R. Food, fibre and other ecosystem products. In IPCC WGII Sixth Assessment Report 11–13 Ch. 5 (IPCC, 2022).

  • Zandalinas, S. I. & Mittler, R. Plant responses to multifactorial stress combination. New Phytol. 234, 1161–1167 (2022).

    Article 

    Google Scholar 

  • Barrett, C. B. et al. Bundling innovations to transform agri-food systems. Nat. Sustain. 3, 974–976 (2020).

    Article 

    Google Scholar 

  • Peng, B. & Guan, K. Harmonizing climate-smart and sustainable agriculture. Nat. Food 2, 853–854 (2021).

    Article 

    Google Scholar 

  • Zabel, F. et al. Large potential for crop production adaptation depends on available future varieties. Glob. Chang. Biol. 27, 3870–3882 (2021).

    Article 

    Google Scholar 

  • Challinor, A. J., Koehler, A.-K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).

    Article 

    Google Scholar 

  • Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).

    Article 

    Google Scholar 

  • Vogel, E. & Meyer, R. Climate Change, Climate Extremes, and Global Food Production — Adaptation in the Agricultural Sector. Resilience: The Science of Adaptation to Climate Change (Elsevier Inc., 2018).

  • Lal, R. Soil health and carbon management. Food Energy Secur. 5, 212–222 (2016).

    Article 

    Google Scholar 

  • Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2021).

    Article 

    Google Scholar 

  • Baldos, U. L. C. & Hertel, T. W. The role of international trade in managing food security risks from climate change. Food Secur. 7, 275–290 (2015).

    Article 

    Google Scholar 

  • Deguines, N. et al. Large-scale trade-off between agricultural intensification and crop pollination services. Front. Ecol. Environ. 12, 212–217 (2014).

    Article 

    Google Scholar 

  • Vyas, S., Dalhaus, T., Kropff, M., Aggarwal, P. & Meuwissen, M. P. M. Mapping global research on agricultural insurance. Environ. Res. Lett. 16, 103003 (2021).

    Article 

    Google Scholar 

  • Hazell, P. & Varangis, P. Best practices for subsidizing agricultural insurance. Glob. Food Sec. 25, 100326 (2020).

    Article 

    Google Scholar 

  • Funk, C. et al. Recognizing the famine early warning systems network over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Am. Meteorol. Soc. 100, 1011–1027 (2019).

    Article 

    Google Scholar 

  • Reichstein, M., Riede, F. & Frank, D. More floods, fires and cyclones — plan for domino effects on sustainability goals. Nature 592, 347–349 (2021).

    Article 

    Google Scholar 

  • Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021).

    Article 

    Google Scholar 

  • Hao, Z., Hao, F., Xia, Y., Singh, V. P. & Zhang, X. A monitoring and prediction system for compound dry and hot events. Environ. Res. Lett. 14, 114034 (2019).

    Article 

    Google Scholar 

  • Benami, E. et al. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nat. Rev. Earth Environ. 2, 140–159 (2021).

    Article 

    Google Scholar 

  • Famine Early Warning System Network. East Africa seasonal monitor. FEWS https://fews.net/sites/default/files/documents/reports/EAST_AFRICA_Seasonal_Monitor_20_May_2022_1.pdf (2022).

  • Becker-Reshef, I. et al. The GEOGLAM crop monitor for AMIS: assessing crop conditions in the context of global markets. Glob. Food Sec. 23, 173–181 (2019).

    Article 

    Google Scholar 

  • GEOGLAM Crop Monitor. Special report: unprecedented 4th consecutive poor rainfall season for the Horn of Africa. Crop Monitor https://cropmonitor.org/documents/SPECIAL/reports/Special_Report_20220523_East_Africa.pdf (2022).

  • Geange, S. R. et al. The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research. New Phytol. 229, 2497–2513 (2021).

    Article 

    Google Scholar 

  • Reynolds, M. P. et al. Harnessing translational research in wheat for climate resilience. J. Exp. Bot. 72, 5134–5157 (2021).

    Article 

    Google Scholar 

  • Makondo, C. C. & Thomas, D. S. G. Climate change adaptation: linking indigenous knowledge with western science for effective adaptation. Environ. Sci. Policy 88, 83–91 (2018).

    Article 

    Google Scholar 

  • Sharafi, L., Zarafshani, K., Keshavarz, M., Azadi, H. & Van Passel, S. Farmers’ decision to use drought early warning system in developing countries. Sci. Total Environ. 758, 142761 (2021).

    Article 

    Google Scholar 

  • Fischer, K. Why new crop technology is not scale-neutral — A critique of the expectations for a crop-based African Green Revolution. Res. Policy 45, 1185–1194 (2016).

    Article 

    Google Scholar 

  • Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    Article 

    Google Scholar 

  • Glauber, J., Baldwin, K., Antón, J. & Ziebinska, U. Design principles for agricultural risk management policies. OECD Food Agric. Fish. Pap. https://doi.org/10.1787/1048819f-en (2021).

    Article 

    Google Scholar 

  • Annan, F. & Schlenker, W. Federal crop insurance and the disincentive to adapt to extreme heat. Am. Econ. Rev. 105, 262–266 (2015).

    Article 

    Google Scholar 

  • Deryugina, T. & Konar, M. Impacts of crop insurance on water withdrawals for irrigation. Adv. Water Resour. 110, 437–444 (2017).

    Article 

    Google Scholar 

  • Agrimonti, C., Lauro, M. & Visioli, G. Smart agriculture for food quality: facing climate change in the 21st century. Crit. Rev. Food Sci. Nutr. 61, 971–981 (2021).

    Article 

    Google Scholar 

  • Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).

    Article 

    Google Scholar 

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article 

    Google Scholar 

  • Willmott, C. J. & Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999). University of Delaware http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts.html (2000).

  • Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations — the CRU TS3.10 dataset. Int. J. Clim. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

    Article 

    Google Scholar 

  • Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Carbon turnover gets wet

    Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses