in

Congruent evolutionary responses of European steppe biota to late Quaternary climate change

  • Shackleton, N. J., Sánchez-Goñi, M. F., Pailler, D. & Lancelot, Y. Marine isotope substage 5e and the eemian interglacial. Glob. Planet. Change 36, 151–155 (2003).

    ADS 

    Google Scholar 

  • Shackleton, N. J., Chapman, M., Sánchez-Goñi, M. F., Pailler, D. & Lancelot, Y. The classic marine isotope substage 5e. Quat. Res. 58, 14–16 (2002).

    CAS 

    Google Scholar 

  • Hofreiter, M. & Stewart, J. Ecological change, range fluctuations and population dynamics during the pleistocene. Curr. Biol. 19, R584–R594 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).

    Google Scholar 

  • Petit, R. J. et al. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300, 1563–1565 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Magri, D., Di Rita, F., Aranbarri, J., Fletcher, W. & González-Sampériz, P. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quat. Sci. Rev. 163, 23–55 (2017).

    ADS 

    Google Scholar 

  • Calatayud, J. et al. Pleistocene climate change and the formation of regional species pools. Proc. R. Soc. B Biol. Sci. 286, 20190291 (2019).

    Google Scholar 

  • Ebdon, S. et al. The Pleistocene species pump past its prime: evidence from European butterfly sister species. Mol. Ecol. 30, 3575–3589 (2021).

  • Záveská, E. et al. Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol. Phylogenet. Evol. 139, 106572 (2019).

  • Wesche, K. et al. The Palaearctic steppe biome: a new synthesis. Biodivers. Conserv. 25, 2197–2231 (2016).

    Google Scholar 

  • Walter, H. & Breckle, S. Ökologie der Erde, Band 1. (Spektrum Akademischer Verlag, 1991).

  • Braun-Blanquet, J. Die inneralpine Trockenvegetation: von der Provence bis zur Steiermark. (Gustav Fischer, 1961).

  • Hurka, H. et al. The Eurasian steppe belt: Status quo, origin and evolutionary history. Turczaninowia 22, 5–71 (2019).

    Google Scholar 

  • Jännicke, W. Die Sandflora von Mainz, ein Relict aus der Steppenzeit. (Gebrueder Knauer, 1892).

  • Allen, J. R. M. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Reille, M. & de Beaulieu, J. L. Pollen analysis of a long upper Pleistocene continental sequence in a Velay maar (Massif Central, France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 35–48 (1990).

    Google Scholar 

  • Sadori, L. et al. Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka. Biogeosciences 13, 1423–1437 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Ellenberg, H. & Leuschner, C. Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. (Stuttgart: Verlag Eugen Ulmer, 2010).

  • Kirschner, P. et al. Long-term isolation of European steppe outposts boosts the biomes conservation value. Nat. Commun. 11, 1968 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fonseca, E. M., Colli, G. R., Werneck, F. P. & Carstens, B. C. Phylogeographic model selection using convolutional neural networks. Mol. Ecol. Resour. 21, 2661–2675 (2021).

  • Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Csilléry, K., Blum, M. G. B., Gaggiotti, O. E. & François, O. Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 25, 410–418 (2010).

    PubMed 

    Google Scholar 

  • Flagel, L., Brandvain, Y. & Schrider, D. R. The unreasonable effectiveness of convolutional neural networks in population genetic inference. Mol. Biol. Evol. 36, 220–238 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Robert, C. P., Cornuet, J.-M., Marin, J.-M. & Pillai, N. S. Lack of confidence in approximate Bayesian computation model choice. Proc. Natl Acad. Sci. USA 108, 15112–15117 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez, T., Cury, J., Charpiat, G. & Jay, F. Deep learning for population size history inference: design, comparison and combination with approximate Bayesian computation. Mol. Ecol. Resour. 21, 2645–2660 (2021).

  • Liu, X. & Fu, Y.-X. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biol. 21, 280 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. & Fu, Y.-X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555–559 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magri, D. et al. A new scenario for the quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol. 171, 199–221 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Pironon, S. et al. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 92, 1877–1909 (2017).

    PubMed 

    Google Scholar 

  • Arenas, M., Ray, N., Currat, M. & Excoffier, L. Consequences of range contractions and range shifts on molecular diversity. Mol. Biol. Evol. 29, 207–218 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2008).

    Google Scholar 

  • Mona, S., Ray, N., Arenas, M. & Excoffier, L. Genetic consequences of habitat fragmentation during a range expansion. Heredity 112, 291–299 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Szűcs, M., Melbourne, B. A., Tuff, T. & Hufbauer, R. A. The roles of demography and genetics in the early stages of colonization. Proc. R. Soc. B Biol. Sci. 281, 20141073 (2014).

    Google Scholar 

  • Loog, L. Sometimes hidden but always there: the assumptions underlying genetic inference of demographic histories. Philos. Trans. R. Soc. B Biol. Sci. 376, 20190719 (2021).

    Google Scholar 

  • Narbona, E., Arista, M. & Ortiz, P. L. Explosive seed dispersal in two perennial Mediterranean Euphorbia species (Euphorbiaceae). Am. J. Bot. 92, 510–516 (2005).

    PubMed 

    Google Scholar 

  • Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).

    PubMed 

    Google Scholar 

  • Flouri, T., Jiao, X., Rannala, B. & Yang, Z. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 35, 2585–2593 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willeit, M., Ganopolski, A., Calov, R. & Brovkin, V. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci. Adv. 5, eaav7337 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, J., Sato, M., Russell, G. & Kharecha, P. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 371, 20120294 (2013).

    ADS 

    Google Scholar 

  • Martinson, D. G. et al. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res. 27, 1–29 (1987).

    CAS 

    Google Scholar 

  • OConnell, K. A. et al. Impacts of the Toba eruption and montane forest expansion on diversification in Sumatran parachuting frogs (Rhacophorus). Mol. Ecol. 29, 2994–3009 (2020).

    Google Scholar 

  • Theodoridis, S. et al. How do cold-adapted plants respond to climatic cycles? Interglacial expansion explains current distribution and genomic diversity in Primula farinosa L. Syst. Biol. 66, 715–736 (2017).

    PubMed 

    Google Scholar 

  • Williams, M. The <73 ka Toba super-eruption and its impact: history of a debate. Quat. Int. 258, 19–29 (2012).

    Google Scholar 

  • Marquer, L. et al. Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quat. Sci. Rev. 171, 20–37 (2017).

    ADS 

    Google Scholar 

  • Jackson, N. D., Morales, A. E., Carstens, B. C. & OMeara, B. C. PHRAPL: phylogeographic inference using approximate likelihoods. Syst. Biol. 66, 1045–1053 (2017).

    PubMed 

    Google Scholar 

  • Oaks, J. R. Full Bayesian comparative phylogeography from genomic data. Syst. Biol. 68, 371–395 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Perez, M. F. et al. Coalescent-based species delimitation meets deep learning: Insights from a highly fragmented cactus system. Mol. Ecol. Resour. 22, 1016–1028 (2022).

  • Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, 1–7 (2008).

    Google Scholar 

  • Paun, O. et al. Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Syst. Biol. 65, 212–227 (2016).

    PubMed 

    Google Scholar 

  • Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Paris, J. R., Stevens, J. R. & Catchen, J. M. Lost in parameter space: a road map for stacks. Methods Ecol. Evol. 8, 1360–1373 (2017).

    Google Scholar 

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Leary, S. J., Puritz, J. B., Willis, S. C., Hollenbeck, C. M. & Portnoy, D. S. These aren’t the loci you’re looking for: principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 27, 3193–3206 (2018).

    Google Scholar 

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maier, P. A., Vandergast, A. G., Ostoja, S. M., Aguilar, A. & Bohonak, A. J. Pleistocene glacial cycles drove lineage diversification and fusion in the Yosemite toad (Anaxyrus canorus). Evolution 73, 2476–2496 (2019).

    PubMed 

    Google Scholar 

  • Ortiz, D., Pekár, S., Bilat, J. & Alvarez, N. Poor performance of DNA barcoding and the impact of RAD loci filtering on the species delimitation of an Iberian ant-eating spider. Mol. Phylogenet. Evol. 154, 106997 (2021).

    PubMed 

    Google Scholar 

  • Tiley, G. P., Poelstra, J. W., dos Reis, M., Yang, Z. & Yoder, A. D. Molecular clocks without rocks: new solutions for old problems. Trends Genet. 36, 845–856 (2020).

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Angelis, K. & Dos Reis, M. The impact of ancestral population size and incomplete lineage sorting on Bayesian estimation of species divergence times. Curr. Zool. 61, 874–885 (2015).

    Google Scholar 

  • Yoder, A. D. et al. Geogenetic patterns in mouse lemurs (genus Microcebus) reveal the ghosts of Madagascar’s forests past. Proc. Natl Acad. Sci. USA 113, 8049–8056 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Keightley, P. D., Ness, R. W., Halligan, D. L. & Haddrill, P. R. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogasterfull-sib family. Genetics 196, 313–320 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Charlesworth, B. Evolution in Age-Structured Populations. (Cambridge University Press, 1994). https://doi.org/10.1017/CBO9780511525711.

  • Ingram, K. K., Pilko, A., Heer, J. & Gordon, D. M. Colony life history and lifetime reproductive success of red harvester ant colonies. J. Anim. Ecol. 82, 540–550 (2013).

    PubMed 

    Google Scholar 

  • Lauenroth, W. K. & Adler, P. B. Demography of perennial grassland plants: survival, life expectancy and life span. J. Ecol. 96, 1023–1032 (2008).

    Google Scholar 

  • Golubeva, I. V. The age structure and numbers dynamics of feather grass (Stipa pennata L.) in the conditions of meadow steppe. Sci. Proc. Mosc. Reg. Pedagog. Inst. Nat. Geogr. Inst. 153, 283–303 (1964).

    Google Scholar 

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hudson, R. R. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Oliveira, E. A. et al. Historical demography and climate driven distributional changes in a widespread Neotropical freshwater species with high economic importance. Ecography 43, 1291–1304 (2020).

    Google Scholar 

  • Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. On calibration of modern neural networks. Preprint at arXiv https://arxiv.org/abs/1706.04599 (2017).

  • Mondal, M., Bertranpetit, J. & Lao, O. Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania. Nat. Commun. 10, 246 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosauer, D. F., Catullo, R. A., VanDerWal, J., Moussalli, A. & Moritz, C. Lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. PLoS ONE 10, e0126274 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).

    ADS 

    Google Scholar 

  • Gent, P. R. et al. The Community Climate System Model Version 4. J. Clim. 24, 4973–4991 (2011).

    ADS 

    Google Scholar 

  • Richmond, O. M. W., McEntee, J. P., Hijmans, R. J. & Brashares, J. S. Is the climate right for Pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents. PLoS ONE 5, e12899 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez, M. F. Congruent evolutionary responses of European steppe biota to late Quaternary climate change: insights from convolutional neural network-based demographic modeling. CNN_ABCsteppe https://doi.org/10.5281/zenodo.5948567 (2022).

  • Anhuf, D., Bräuning, A., Burkhard, F. & Max, S. Die Vegetationsentwicklung seit dem Höhepunkt der letzten Eiszeit. In Nationalatlas Bundesrepublik Deutschland. Band 3. Klima, Pflanzen- und Tierwelt (ed. Kappas, M.) 88–91 (Spektrum, 2003).

  • Becker, D., Verheul, J., Zickel, M. & Willmes, C. LGM paleoenvironment of Europe—Map. CRC806-Database https://doi.org/10.5880/SFB806.15 (2015).

  • de Beaulieu, J.-L. & Reille, M. Long Pleistocene pollen sequences from the Velay Plateau (Massif Central, France). Veg. Hist. Archaeobotany 1, 233–242 (1992).

    Google Scholar 

  • Tzedakis, P. C. C., Emerson, B. C. C. & Hewitt, G. M. M. Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol. Evol. 28, 696–704 (2013).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Climate Grand Challenges finalists on using data and science to forecast climate-related risk

    Leveraging science and technology against the world’s top problems