in

Connecting nutritional facts with the traditional ranking of ethnobotanically used fodder grasses by local farmers in Central Punjab of Pakistan

  • Harun, N., Chaudhry, A. S., Shaheen, S., Ullah, K. & Khan, F. Ethnobotanical studies of fodder grass resources for ruminant animals, based on the traditional knowledge of indigenous communities in Central Punjab Pakistan. J. Ethnobiol. Ethnomed. 13(1), 56. https://doi.org/10.1186/s13002-017-0184-5 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaheen, H., Qureshi, R., Qaseem, M. F. & Bruschi, P. The fodder grass resources for ruminants: A indigenous treasure of local communities of Thal desert Punjab, Pakistan. PLoS One 15(3), e0224061. https://doi.org/10.1371/journal.pone.0224061 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huston, J. E. Forage utilization and nutrient requirements of the goat1. J. Dairy Sci. 61(7), 988–993. https://doi.org/10.3168/jds.S0022-0302(78)83679-0 (1978).

    Article 

    Google Scholar 

  • Wilson, A. D., Leigh, J. H., Hindley, N. L. & Mulham, W. E. Comparison of the diets of goats and sheep on a Casuarina cristataHeterodendrum oleifolium woodland community in western New South Wales. Aust. J. Exp. Agric. 15(72), 45–53. https://doi.org/10.1071/EA9750045 (1975).

    CAS 
    Article 

    Google Scholar 

  • Grünwaldt, E. G., Pedrani, A. R. & Vich, A. I. Goat grazing in the arid piedmont of Argentina. Small Ruminants Res. 13(3), 211–216. https://doi.org/10.1016/0921-4488(94)90066-3 (1994).

    Article 

    Google Scholar 

  • Aganga, A. A., Omphile, U. J., Thema, T. & Baitshotlhi, J. C. Chemical composition of napier grass (Pennisetum purpureum) at different stages of growth and napier grass silages with additives. J. Biosci. 5(4), 493–496. https://doi.org/10.3923/jbs.2005.493.496 (2005).

    Article 

    Google Scholar 

  • Ganskopp, D. & Bohnert, D. Nutritional dynamics of 7 Northern Great Basin grasses. J. Range Manage. 54, 640–647. https://doi.org/10.2307/4003664 (2001).

    Article 

    Google Scholar 

  • Capstaff, N. M. & Miller, A. J. Improving the yield and nutritional quality of forage crops. Front. Plant Sci. 9, 535. https://doi.org/10.3389/fpls.2018.00535 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arzani, H., Basiri, M., Khatibi, F. & Ghorbani, G. Nutritive value of some Zagros Mountain rangeland species. Small Ruminants Res. 65(1–2), 128–135. https://doi.org/10.1016/j.smallrumres.2005.05.033 (2006).

    Article 

    Google Scholar 

  • Keba, H. T., Madakadze, I. C., Angassa, A. & Hassen, A. Nutritive value of grasses in semi-arid rangelands of Ethiopia, Local experience based herbage preference evaluation versus laboratory analysis. Asian-Aust. J. Anim. Sci. 26(3), 366. https://doi.org/10.5713/ajas.2012.12551 (2013).

    Article 

    Google Scholar 

  • Dhungana, S., Tripathee, H. P., Puri, L., Timilsina, Y. P. & Devkota, K. P. Nutritional analysis of locally preferred fodder trees of Middle Hills of Nepal, a case study from Hemja VDC, Kaski District, Nepal. J. Sci. Technol. 13(2), 39–44. https://doi.org/10.3126/njst.v13i2.7712 (2012).

    Article 

    Google Scholar 

  • Talore, D. G. Evaluation of major feed resources in crop-livestock mixed farming systems, southern Ethiopia, Indigenous knowledge versus laboratory analysis results. J. Agric. Rural Dev. 116(2), 157–166 (2015). http://nbn-resolving.de/urn:nbn:de:hebis:34-2015061048507.

  • Geng, Y. et al. Nutrient value of wild fodder species and the implications for improving the diet of mithun (Bos frontalis) in Dulongjiang area, Yunnan Province, China. Plant Diversity 42(6), 455–463. https://doi.org/10.1016/j.pld.2020.09.007 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sayed, M. A. I., Kulkarni, S., Kulkarni, D., Pande, A. & Kauthale, V. Nutritional study of local fodder species in Ahmednagar district of western Maharashtra. Agric. Sci. Digest A Res. J. 37(2), 154–156. https://doi.org/10.18805/asd.v37i2.7979 (2017).

    Article 

    Google Scholar 

  • Evitayani, L. W., Fariani, A., Ichinohe, T. & Fujihara, T. Study on nutritive value of tropical forages in North Sumatra, Indonesia. Asian-Aust. J. Anim. Sci. 17(11), 1518–1523. https://doi.org/10.5713/ajas.2004.1518 (2004).

    Article 

    Google Scholar 

  • Kanak, A. R., Khan, M. J., Debi, M. R., Pikar, M. K. & Aktar, M. Nutritive value of three fodder species at different stages of maturity, Bangladesh. J. Anim. Sci. 41(2), 90–95. https://doi.org/10.3329/bjas.v41i2.14123 (2012).

    Article 

    Google Scholar 

  • Rahim, I., Maselli, D., Rueff, H. & Wiesmann, U. Indigenous fodder trees can increase grazing accessibility for landless and mobile pastoralists in northern Pakistan. Pastoral. Res. Policy Pract. 1(2), 1–2. https://doi.org/10.1186/2041-7136-1-2 (2011).

    Article 

    Google Scholar 

  • Sultan, J., Inam-ur-rahim, I., Nawaz, H., Yaqoob, M. & Javed, I. Mineral composition, palatability and digestibility of free rangeland grasses of northern grasslands of Pakistan. Pak. J. Bot. 40(5), 2059–2070 (2008).

    CAS 

    Google Scholar 

  • Bano, G., Islam, M., Ahmad, S., Aslam, S. & Koukab, S. Seasonal variation in nutritive value of Chrysopogon aucheri (boiss) stapf., and Cymbopogon jwarancusa (jones) schult., in highland Balochistan, Pakistan. Pak. J. Bot. 41(2), 511–517 (2009).

    CAS 

    Google Scholar 

  • Rafay, M., Khan, R. A., Yaqoob, S. & Ahmad, M. Nutritional evaluation of major range grasses from Cholistan Desert. Pak. J. Nutr. 12(1), 23–29. https://doi.org/10.3923/pjn.2013.23.29 (2013).

    CAS 
    Article 

    Google Scholar 

  • Sultan, J. I., Manzoor, M. N., Shahzad, M. A. & Nisa M. Nutritional profile and in situ digestion kinetics of some irrigated grasses at pre-bloom stage. In International Conference on Biology, Environment and Chemistry 455–463 (2011). https://doi.org/10.3923/pjn.2013.23.29.

  • Ahmed, K. et al. Proximate analysis, Relative feed values of various forage plants for ruminants investigated in a semi-arid region of Punjab, Pakistan. J. Agric. Sci. 27(6), 302. https://doi.org/10.4236/as.2013.46043 (2013).

    Article 

    Google Scholar 

  • Manzoor, M. N., Sultan, J. I., Nisa, M. U. & Bilal, M. Q. Nutritive evaluation and in-situ digestibility of irrigated grasses. J. Anim. Plant Sci. 23, 1223–1227 (2013).

    CAS 

    Google Scholar 

  • Sultan, J. I., Rahim, I. U., Nawaz, H. & Yaqoob, M. Nutritive value of marginal land grasses of northern grasslands of Pakistan. Pak. J. Bot. 39(4), 1071–1082 (2007).

    Google Scholar 

  • Khan, R. I., Alam, M. R. & Amin, M. R. Effect of season and fertilizer on species composition and nutritive value of native grasses. Asian-Aust. J. Anim. Sci. 12(8), 1222–1227. https://doi.org/10.5713/ajas.1999.1222 (1999).

    Article 

    Google Scholar 

  • Grant, K., Kreyling, J., Dienstbach, L. F. H., Beierkuhnlein, C. & Jentsch, A. Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland. Agric. Ecosyst. Environ. 186, 11–22. https://doi.org/10.1016/j.agee.2014.01.013 (2014).

    Article 

    Google Scholar 

  • Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6(1), 1–9. https://doi.org/10.1038/ncomms6989 (2015).

    CAS 
    Article 

    Google Scholar 

  • Egeru, A. et al. Land cover and soil properties influence on forage quantity in a semiarid region in East Africa. Appl. Environ. Soil Sci. https://doi.org/10.1155/2019/6874268 (2019).

    Article 

    Google Scholar 

  • Mertens, D. R. Interpretation of forage analysis reports. In 30th National Alfalfa symposium. Las vegas, NV. (2000).

  • Hussain, F. & Durrani, M. J. Nutritional evaluation of some forage plants from Harboi Rangeland, Kalat, Pakistan. Pak. J. Bot. 41(3), 1137–1154 (2009).

    CAS 

    Google Scholar 

  • Ammar, H., López, S., Bochi-Brum, O., García, R. & Ranilla, M. J. Composition and in vitro digestibility of leaves and stems of grasses and legumes harvested from permanent mountain meadows at different stages of maturity. J. Anim. Feed Sci. 8(4), 599–610. https://doi.org/10.22358/jafs/69184/1999 (1999).

    Article 

    Google Scholar 

  • Faichney, G. J., Gordon, G. L. R., Welch, R. J. & Rintoul, A. J. Effect of dietary free lipid on anaerobic fungi and digestion in the rumen of sheep. Aust. J. Agric. Res. 53(5), 519–527. https://doi.org/10.1071/AR01143 (2002).

    CAS 
    Article 

    Google Scholar 

  • Khan, S., Anwar, K., Kalim, K., Saeed, A. & Shah, S. Z. Nutritional evaluation of some top fodder tree leaves and shrubs of District Dir (Lower), Pakistan as a quality livestock feed. Int. J. Curr. Microbiol. Appl. Sci. 3(5), 941–947 (2014).

    Google Scholar 

  • Tudsri, S. & Kaewkunya, C. Effect of leucaena row spacing and cutting intensity on the growth of leucaena and three associated grasses in Thailand. Asian Aust. J. Anim. Sci. 15(7), 986–991 (2002).

    Google Scholar 

  • Nasrullah, M., Niimi, R., Akashi, X. & Kawamura, O. Nutritive evaluation of forage plants grown in South Sulawesi, Indonesia. Asian Aust. J. Anim. Sci. 16(5), 693–701. https://doi.org/10.5713/ajas.2004.63 (2003).

    CAS 
    Article 

    Google Scholar 

  • Yahaya, M. S., Kawai, M., Takahashi, J. & Matsuoka, S. The effects of different moisture content and ensiling time on silo degradation of structural carbohydrate of orchard grass. Asian Aust. J. Anim. Sci. 15(2), 213–217. https://doi.org/10.5713/ajas.2002.213 (2002).

    Article 

    Google Scholar 

  • Norton, B. W. Differences between species in forage quality. In Nutritional Limits to Animal Production from Pastures, proceedings of an international symposium held at St. Lucia, Queensland, Australia, UK. Commonwealth Agricultural Bureaux, (1982).

  • National Research council. Nutrient Requirements of Dairy Cattle 7th edn. (National Academy Press, 2001).

    Google Scholar 

  • Nogueira Filho, J. C. M., Fondevila, M., Urdaneta, A. B. & Ronquillo, M. G. In vitro microbial fermentation of tropical grasses at an advanced maturity stage. Anim. Feed Sci. Technol. 83(2), 145–157. https://doi.org/10.1016/S0377-8401(99)00123-6 (2000).

    CAS 
    Article 

    Google Scholar 

  • National Research Council. Nutrient Requirements of Sheep, Vol ***5 (National Academies Press, 1985).

    Google Scholar 

  • Erickson, P. S. & Kalscheur, K. F. Nutrition and feeding of dairy cattle. In Animal Agriculture pp 157–180 (2020).

  • Holechek, J. L., Pieper, R. D. & Herbel, C. H. Range Management Principles and Practices 5th edn. (Prentice-Hall, 2004).

    Google Scholar 

  • Saro, C. et al. Effect of dietary crude protein on animal performance, blood biochemistry profile, ruminal fermentation parameters and carcass and meat quality of heavy fattening Assaf lambs. Animals 10(11), 2177 (2020).

    PubMed Central 

    Google Scholar 

  • Buckmaster, D. R. Forage Looses, Equal Economic Looses Agricultural Engineer Fact Shell PM-107 (The Pennsylvania State University, 1990).

    Google Scholar 

  • Paulson, J., Jung, H., Raeth-Knight, M. & Linn, J. Grass vs. legume forages for dairy cattle (2008). https://conservancy.umn.edu/bitstream/handle/11299/204154/SF95_M658a-69-2008_magr56173.pdf?sequence=1.

  • Lüscher, A., Mueller-Harvey, I., Soussana, J. F., Rees, R. M. & Peyraud, J. L. Potential of legume-based grassland–livestock systems in Europe: A review. Grass Forage Sci. 69(2), 206–228. https://doi.org/10.1111/gfs.12124 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Soest, P. J. Nutritional Ecology of the Ruminant 2nd edn. (Cornell University Press, 1994).

    Google Scholar 

  • Tucak, M., Ravlic, M., Horvat, D. & Cupic, T. Improvement of forage nutritive quality of alfalfa and red clover through plant breeding. Agronomy 11(11), 2176. https://doi.org/10.3390/agronomy11112176 (2021).

    CAS 
    Article 

    Google Scholar 

  • Harper, K. & McNeill, D. The role iNDF in the regulation of feed intake and the importance of its assessment in subtropical ruminant systems (the role of iNDF in the regulation of forage intake). Agriculture 5(3), 778–790. https://doi.org/10.3390/agriculture5030778 (2015).

    CAS 
    Article 

    Google Scholar 

  • Singh, G. P. & Oosting, S. J. A model for describing the energy value of straws. Indian Dairyman XLI 322–327 (1992). https://agris.fao.org/agris-search/search.do?recordID=NL2012083374.

  • Reed, J. A. & Goe, M. R. Estimating the Nutritive Value of Cereal Crop Residues, Implications for developing feeding standards for draught animals. ILCA Bulletin (1989). https://hdl.handle.net/10568/4610.

  • Kumar, K. & Soni, A. Nutrient evaluation of common vegetation of Rajasthan, Pennisetum typholdenum, Cenchrus ciliaris, Cenchrus setigerus and Lasiurus sindicus. Int. J. Plant Anim. Environ. Sci. 4(1), 177–183 (2014).

    CAS 

    Google Scholar 

  • Kramberger, B. & Klemenčič, S. Effect of harvest date on the chemical composition and nutritive value of Cerastium holosteoides. Grass Forage Sci. 58(1), 12–16. https://doi.org/10.1046/j.1365-2494.2003.00346.x (2003).

    CAS 
    Article 

    Google Scholar 

  • Raffrenato, E. et al. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. J. Dairy Sci. 100(10), 8119–8131. https://doi.org/10.3168/jds.2016-12364 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McDonald, P. et al. Animal nutrition. Pearson UK https://doi.org/10.1088/1755-1315/951/1/012013 (2022).

    Article 

    Google Scholar 

  • Brown, P. H., Graham, R. D. & Nicholas, D. G. D. The effect of manganese and nitrate supply on the level of phenolics and lignin in young wheat plant. Plant Soil 81, 437–440 (1984).

    CAS 

    Google Scholar 

  • Mbwile, R. P. & Uden, P. Effects of age and season on growth and nutritive value of Rhodes grass (Chloris gayana cv. Kunthi). Anim. Feed Sci. Technol. 65, 87–98 (1997).

    Google Scholar 

  • Hameed, M., Naz, N., Ahmad, M. S. A. & Islam-ud-Din, R. A. Morphological adaptations of some grasses from the salt range, Pakistan. Pak. J. Bot. 40(4), 1571–1578 (2008).

    Google Scholar 

  • Makkar, H. P. S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 49(3), 241–256. https://doi.org/10.1016/S0921-4488(03)00142-1 (2003).

    ADS 
    Article 

    Google Scholar 

  • Patra, A. K. Nutritional management in organic livestock farming for improved ruminant health and production—an overview. Livestock Res. Rural Dev. 19(3), 41 (2007).

    Google Scholar 

  • Akande, K. E., Doma, U. D., Agu, H. O. & Adamu, H. M. Major antinutrients found in plant protein sources: Their effect on nutrition. Pak. J. Nutr. 9(8), 827–832 (2010).

    CAS 

    Google Scholar 

  • Tadele, Y. Important anti-nutritional substances and inherent toxicants of feeds. Food Sci. Qual. Manage. 36, 40–47 (2015).

    Google Scholar 

  • D’Mello, J.F. Farm animal metabolism and nutrition. Cabi Publishing. UK. (2000). https://www.researchgate.net/profile/Adegbola-Adesogan/publication/242151831_What_are_feeds_worth_A_critical_evaluation_of_selected_nutritive_value_methods/links/5852780c08aef7d030a4e95b/What-are-feeds-worth-A-critical-evaluation-of-selected-nutritive-value-methods.pdf.

  • Panhwar, F. Anti-nutritional Factors in Oil Seeds as Aflatoxin in Ground Nut (Digitalverlag GmbH, 2005).

    Google Scholar 

  • Huang, J. et al. Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytol. 225(1), 26–36. https://doi.org/10.1111/nph.16173 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Min, B. R., Barry, T. N., Attwood, G. T. & McNabb, W. C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages, a review. Anim. Feed Sci. Technol. 106(1–4), 3–19 (2003).

    CAS 

    Google Scholar 

  • Muetzel, S., Hoffmann, E. M. & Becker, K. Supplementation of barley straw with Sesbania pachycarpa leaves in vitro: Effects on fermentation variables and rumen microbial population structure quantified by ribosomal RNA targeted probes. Br. J. Nutr. 89(4), 445–453 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Yao, L. H. et al. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 59(3), 113–122 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Tracy, B. F. et al. Resilience in forage and grazinglands. Crop Sci. 58(1), 31–42 (2018).

    Google Scholar 

  • Ehsen, S. et al. Secondary metabolites as anti-nutritional factors in locally used halophytic forage/fodder. Pak. J. Bot. 48(2), 629–636 (2016).

    CAS 

    Google Scholar 

  • Mudzwiri, M. Evaluation of traditional South African leafy plants for their safety in human consumption. Doctoral Dissertation (2007).

  • Francis, G., Kerem, Z., Makkar, H. P. & Becker, K. The biological action of saponins in animal systems, A review. Brit. J. Nutr. 88(6), 587–605 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Duke, J. Phytochemical and ethnobotanical databases (2000).

  • Terrill, T. H., Rowan, A. M., Douglas, G. B. & Barry, T. N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 58(3), 321–329. https://doi.org/10.1002/jsfa.2740580306 (1992).

    CAS 
    Article 

    Google Scholar 

  • Barry, T. N. & McNabb, W. C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 81(4), 263–272 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Kallah, S. K., Bale, J. D., Abdullahi, U. S., Mohammed, I. R. & Lawai, R. Nutrient composition of native forms of semi-arid and dry-humid savannahs of Nigeria. Anim. Feed Sci. Technol. 84, 137–145 (2000).

    CAS 

    Google Scholar 

  • Megersa, E., Mengistu, A. & Asebe, G. Nutritional characterization of selected fodder species in Abol and Lare Districts of Gambella Region, Ethiopia. J. Nutr. Food Sci. 7(2), 2–6 (2017).

    Google Scholar 

  • Van Soest, P. J. & Robertson, J. B. Analysis of Forages and Fibrous Foods (Cornell University, 1985).

    Google Scholar 

  • Moore, K. J. & Jung, H. G. Lignin and fiber digestion. J. Range Manag. 54(4), 420–430 (2001).

    Google Scholar 

  • Ramirez, R. G., Haenlein, G. F. W., Garcia-Castillo, C. G. & Nunez-Gonzalez, M. A. Protein, lignin and mineral contents and In-Situ dry matter digestibility of native Mexican grasses consumed by range goats. Small Ruminant Resour. 52(3), 261–269 (2004).

    Google Scholar 

  • Ronquillo, M. G., Fondevila, M., Urdaneta, A. B. & Newman, Y. In vitro gas production from buffel grass Cenchrus ciliaris L. fermentation in relation to the cutting interval, the level of nitrogen fertilisation and the season of growth. Anim. Feed Sci. Technol. 72(1–2), 19–32 (1998).

    Google Scholar 

  • Mlay, P. S. et al. Feed value of selected tropical grasses, legumes and concentrates. Vet. Arch. 76(1), 53–63 (2006).

    Google Scholar 

  • Arif, M. et al. In vitro digestibility of selected forages in Sargodha district, Pakistan. In Vitro 6(3), 62–72 (2016).

    CAS 

    Google Scholar 

  • Revell, D. K., Baker, S. K. & Purser, B. B. Estimates of the intake and digestion of nitrogen by sheep grazing a Mediterranean pasture as it matures senesces. Aust. Soc. Anim. Prod. 20, 217–220 (1994).

    Google Scholar 

  • Cherney, D. J. R., Mertens, D. R. & Moore, J. E. Intake and digestibility by withers as influenced by forage morphology at three levels of forage offering. J. Anim. Sci. 68(12), 4387–4399. https://doi.org/10.2527/1990.68124387x (1990).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lichtenberg, V. L. & Hemken, R. W. Hay quality. In: Grazing Management: An Ecological Perspective. Timber Press, Portland, Oregon USA (1985). https://www.pakbs.org/pjbot/PDFs/40(1)/PJB40(1)249.pdf.

  • de Oliveira, C. V. et al. Urea supplementation in rumen and post-rumen for cattle fed a low-quality tropical forage. Brit. J. Nutr. 124(11), 1166–1178. https://doi.org/10.1017/S0007114520002251 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rufino, L. M. et al. Effects of the amount and frequency of nitrogen supplementation on intake, digestion, and metabolism in cattle fed low-quality tropical grass. Anim. Feed Sci. Technol. 260, 114367 (2020).

    CAS 

    Google Scholar 

  • Njidda, A. A. Determining dry matter degradability of some semi-arid browse species of north-eastern Nigeria using the in vitro technique. Nigerian J. Basic Appl. Sci. 18(2), 160–167. https://doi.org/10.4314/njbas.v18i2.64306 (2014).

    Article 

    Google Scholar 

  • Rakib-Uz-Zaman, S. M. et al. Ethnobotanical study and phytochemical profiling of Heptapleurum hypoleucum leaf extract and evaluation of its antimicrobial activities against diarrhea-causing bacteria. J. Genet. Engl. Biotechnol. https://doi.org/10.1186/s43141-020-00030-0 (2020).

    Article 

    Google Scholar 

  • Rodrigues, E. & de Oliveira, D. R. Ethnopharmacology: A laboratory science?. Rodriguésia 71, 25 (2020).

    Google Scholar 

  • Kellogg, E. A. Poaceae. In The Families and Genera of Vascular Plants (ed. Kubtizki, K.) (Springer, 2014).

    Google Scholar 

  • Horwitz W. & Latimer G. W. Official methods of analysis of AOAC International. 18th Ed. Gaithersburg, Md. AOAC International (2005). https://doi.org/10.1071/EA9750045.

  • Makkar, H. P., Siddhuraju, P. & Becker, K. Plant Secondary Metabolites (Humana Press, 2007).

    Google Scholar 

  • Tilley, J. M. & Terry, R. A. A two stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18(2), 104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x (1963).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Four researchers with MIT ties earn Schmidt Science Fellowships

    Fusion’s newest ambassador