Harun, N., Chaudhry, A. S., Shaheen, S., Ullah, K. & Khan, F. Ethnobotanical studies of fodder grass resources for ruminant animals, based on the traditional knowledge of indigenous communities in Central Punjab Pakistan. J. Ethnobiol. Ethnomed. 13(1), 56. https://doi.org/10.1186/s13002-017-0184-5 (2017).
Google Scholar
Shaheen, H., Qureshi, R., Qaseem, M. F. & Bruschi, P. The fodder grass resources for ruminants: A indigenous treasure of local communities of Thal desert Punjab, Pakistan. PLoS One 15(3), e0224061. https://doi.org/10.1371/journal.pone.0224061 (2020).
Google Scholar
Huston, J. E. Forage utilization and nutrient requirements of the goat1. J. Dairy Sci. 61(7), 988–993. https://doi.org/10.3168/jds.S0022-0302(78)83679-0 (1978).
Google Scholar
Wilson, A. D., Leigh, J. H., Hindley, N. L. & Mulham, W. E. Comparison of the diets of goats and sheep on a Casuarina cristata–Heterodendrum oleifolium woodland community in western New South Wales. Aust. J. Exp. Agric. 15(72), 45–53. https://doi.org/10.1071/EA9750045 (1975).
Google Scholar
Grünwaldt, E. G., Pedrani, A. R. & Vich, A. I. Goat grazing in the arid piedmont of Argentina. Small Ruminants Res. 13(3), 211–216. https://doi.org/10.1016/0921-4488(94)90066-3 (1994).
Google Scholar
Aganga, A. A., Omphile, U. J., Thema, T. & Baitshotlhi, J. C. Chemical composition of napier grass (Pennisetum purpureum) at different stages of growth and napier grass silages with additives. J. Biosci. 5(4), 493–496. https://doi.org/10.3923/jbs.2005.493.496 (2005).
Google Scholar
Ganskopp, D. & Bohnert, D. Nutritional dynamics of 7 Northern Great Basin grasses. J. Range Manage. 54, 640–647. https://doi.org/10.2307/4003664 (2001).
Google Scholar
Capstaff, N. M. & Miller, A. J. Improving the yield and nutritional quality of forage crops. Front. Plant Sci. 9, 535. https://doi.org/10.3389/fpls.2018.00535 (2018).
Google Scholar
Arzani, H., Basiri, M., Khatibi, F. & Ghorbani, G. Nutritive value of some Zagros Mountain rangeland species. Small Ruminants Res. 65(1–2), 128–135. https://doi.org/10.1016/j.smallrumres.2005.05.033 (2006).
Google Scholar
Keba, H. T., Madakadze, I. C., Angassa, A. & Hassen, A. Nutritive value of grasses in semi-arid rangelands of Ethiopia, Local experience based herbage preference evaluation versus laboratory analysis. Asian-Aust. J. Anim. Sci. 26(3), 366. https://doi.org/10.5713/ajas.2012.12551 (2013).
Google Scholar
Dhungana, S., Tripathee, H. P., Puri, L., Timilsina, Y. P. & Devkota, K. P. Nutritional analysis of locally preferred fodder trees of Middle Hills of Nepal, a case study from Hemja VDC, Kaski District, Nepal. J. Sci. Technol. 13(2), 39–44. https://doi.org/10.3126/njst.v13i2.7712 (2012).
Google Scholar
Talore, D. G. Evaluation of major feed resources in crop-livestock mixed farming systems, southern Ethiopia, Indigenous knowledge versus laboratory analysis results. J. Agric. Rural Dev. 116(2), 157–166 (2015). http://nbn-resolving.de/urn:nbn:de:hebis:34-2015061048507.
Geng, Y. et al. Nutrient value of wild fodder species and the implications for improving the diet of mithun (Bos frontalis) in Dulongjiang area, Yunnan Province, China. Plant Diversity 42(6), 455–463. https://doi.org/10.1016/j.pld.2020.09.007 (2020).
Google Scholar
Sayed, M. A. I., Kulkarni, S., Kulkarni, D., Pande, A. & Kauthale, V. Nutritional study of local fodder species in Ahmednagar district of western Maharashtra. Agric. Sci. Digest A Res. J. 37(2), 154–156. https://doi.org/10.18805/asd.v37i2.7979 (2017).
Google Scholar
Evitayani, L. W., Fariani, A., Ichinohe, T. & Fujihara, T. Study on nutritive value of tropical forages in North Sumatra, Indonesia. Asian-Aust. J. Anim. Sci. 17(11), 1518–1523. https://doi.org/10.5713/ajas.2004.1518 (2004).
Google Scholar
Kanak, A. R., Khan, M. J., Debi, M. R., Pikar, M. K. & Aktar, M. Nutritive value of three fodder species at different stages of maturity, Bangladesh. J. Anim. Sci. 41(2), 90–95. https://doi.org/10.3329/bjas.v41i2.14123 (2012).
Google Scholar
Rahim, I., Maselli, D., Rueff, H. & Wiesmann, U. Indigenous fodder trees can increase grazing accessibility for landless and mobile pastoralists in northern Pakistan. Pastoral. Res. Policy Pract. 1(2), 1–2. https://doi.org/10.1186/2041-7136-1-2 (2011).
Google Scholar
Sultan, J., Inam-ur-rahim, I., Nawaz, H., Yaqoob, M. & Javed, I. Mineral composition, palatability and digestibility of free rangeland grasses of northern grasslands of Pakistan. Pak. J. Bot. 40(5), 2059–2070 (2008).
Google Scholar
Bano, G., Islam, M., Ahmad, S., Aslam, S. & Koukab, S. Seasonal variation in nutritive value of Chrysopogon aucheri (boiss) stapf., and Cymbopogon jwarancusa (jones) schult., in highland Balochistan, Pakistan. Pak. J. Bot. 41(2), 511–517 (2009).
Google Scholar
Rafay, M., Khan, R. A., Yaqoob, S. & Ahmad, M. Nutritional evaluation of major range grasses from Cholistan Desert. Pak. J. Nutr. 12(1), 23–29. https://doi.org/10.3923/pjn.2013.23.29 (2013).
Google Scholar
Sultan, J. I., Manzoor, M. N., Shahzad, M. A. & Nisa M. Nutritional profile and in situ digestion kinetics of some irrigated grasses at pre-bloom stage. In International Conference on Biology, Environment and Chemistry 455–463 (2011). https://doi.org/10.3923/pjn.2013.23.29.
Ahmed, K. et al. Proximate analysis, Relative feed values of various forage plants for ruminants investigated in a semi-arid region of Punjab, Pakistan. J. Agric. Sci. 27(6), 302. https://doi.org/10.4236/as.2013.46043 (2013).
Google Scholar
Manzoor, M. N., Sultan, J. I., Nisa, M. U. & Bilal, M. Q. Nutritive evaluation and in-situ digestibility of irrigated grasses. J. Anim. Plant Sci. 23, 1223–1227 (2013).
Google Scholar
Sultan, J. I., Rahim, I. U., Nawaz, H. & Yaqoob, M. Nutritive value of marginal land grasses of northern grasslands of Pakistan. Pak. J. Bot. 39(4), 1071–1082 (2007).
Khan, R. I., Alam, M. R. & Amin, M. R. Effect of season and fertilizer on species composition and nutritive value of native grasses. Asian-Aust. J. Anim. Sci. 12(8), 1222–1227. https://doi.org/10.5713/ajas.1999.1222 (1999).
Google Scholar
Grant, K., Kreyling, J., Dienstbach, L. F. H., Beierkuhnlein, C. & Jentsch, A. Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland. Agric. Ecosyst. Environ. 186, 11–22. https://doi.org/10.1016/j.agee.2014.01.013 (2014).
Google Scholar
Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6(1), 1–9. https://doi.org/10.1038/ncomms6989 (2015).
Google Scholar
Egeru, A. et al. Land cover and soil properties influence on forage quantity in a semiarid region in East Africa. Appl. Environ. Soil Sci. https://doi.org/10.1155/2019/6874268 (2019).
Google Scholar
Mertens, D. R. Interpretation of forage analysis reports. In 30th National Alfalfa symposium. Las vegas, NV. (2000).
Hussain, F. & Durrani, M. J. Nutritional evaluation of some forage plants from Harboi Rangeland, Kalat, Pakistan. Pak. J. Bot. 41(3), 1137–1154 (2009).
Google Scholar
Ammar, H., López, S., Bochi-Brum, O., García, R. & Ranilla, M. J. Composition and in vitro digestibility of leaves and stems of grasses and legumes harvested from permanent mountain meadows at different stages of maturity. J. Anim. Feed Sci. 8(4), 599–610. https://doi.org/10.22358/jafs/69184/1999 (1999).
Google Scholar
Faichney, G. J., Gordon, G. L. R., Welch, R. J. & Rintoul, A. J. Effect of dietary free lipid on anaerobic fungi and digestion in the rumen of sheep. Aust. J. Agric. Res. 53(5), 519–527. https://doi.org/10.1071/AR01143 (2002).
Google Scholar
Khan, S., Anwar, K., Kalim, K., Saeed, A. & Shah, S. Z. Nutritional evaluation of some top fodder tree leaves and shrubs of District Dir (Lower), Pakistan as a quality livestock feed. Int. J. Curr. Microbiol. Appl. Sci. 3(5), 941–947 (2014).
Tudsri, S. & Kaewkunya, C. Effect of leucaena row spacing and cutting intensity on the growth of leucaena and three associated grasses in Thailand. Asian Aust. J. Anim. Sci. 15(7), 986–991 (2002).
Nasrullah, M., Niimi, R., Akashi, X. & Kawamura, O. Nutritive evaluation of forage plants grown in South Sulawesi, Indonesia. Asian Aust. J. Anim. Sci. 16(5), 693–701. https://doi.org/10.5713/ajas.2004.63 (2003).
Google Scholar
Yahaya, M. S., Kawai, M., Takahashi, J. & Matsuoka, S. The effects of different moisture content and ensiling time on silo degradation of structural carbohydrate of orchard grass. Asian Aust. J. Anim. Sci. 15(2), 213–217. https://doi.org/10.5713/ajas.2002.213 (2002).
Google Scholar
Norton, B. W. Differences between species in forage quality. In Nutritional Limits to Animal Production from Pastures, proceedings of an international symposium held at St. Lucia, Queensland, Australia, UK. Commonwealth Agricultural Bureaux, (1982).
National Research council. Nutrient Requirements of Dairy Cattle 7th edn. (National Academy Press, 2001).
Nogueira Filho, J. C. M., Fondevila, M., Urdaneta, A. B. & Ronquillo, M. G. In vitro microbial fermentation of tropical grasses at an advanced maturity stage. Anim. Feed Sci. Technol. 83(2), 145–157. https://doi.org/10.1016/S0377-8401(99)00123-6 (2000).
Google Scholar
National Research Council. Nutrient Requirements of Sheep, Vol ***5 (National Academies Press, 1985).
Erickson, P. S. & Kalscheur, K. F. Nutrition and feeding of dairy cattle. In Animal Agriculture pp 157–180 (2020).
Holechek, J. L., Pieper, R. D. & Herbel, C. H. Range Management Principles and Practices 5th edn. (Prentice-Hall, 2004).
Saro, C. et al. Effect of dietary crude protein on animal performance, blood biochemistry profile, ruminal fermentation parameters and carcass and meat quality of heavy fattening Assaf lambs. Animals 10(11), 2177 (2020).
Google Scholar
Buckmaster, D. R. Forage Looses, Equal Economic Looses Agricultural Engineer Fact Shell PM-107 (The Pennsylvania State University, 1990).
Paulson, J., Jung, H., Raeth-Knight, M. & Linn, J. Grass vs. legume forages for dairy cattle (2008). https://conservancy.umn.edu/bitstream/handle/11299/204154/SF95_M658a-69-2008_magr56173.pdf?sequence=1.
Lüscher, A., Mueller-Harvey, I., Soussana, J. F., Rees, R. M. & Peyraud, J. L. Potential of legume-based grassland–livestock systems in Europe: A review. Grass Forage Sci. 69(2), 206–228. https://doi.org/10.1111/gfs.12124 (2014).
Google Scholar
Van Soest, P. J. Nutritional Ecology of the Ruminant 2nd edn. (Cornell University Press, 1994).
Tucak, M., Ravlic, M., Horvat, D. & Cupic, T. Improvement of forage nutritive quality of alfalfa and red clover through plant breeding. Agronomy 11(11), 2176. https://doi.org/10.3390/agronomy11112176 (2021).
Google Scholar
Harper, K. & McNeill, D. The role iNDF in the regulation of feed intake and the importance of its assessment in subtropical ruminant systems (the role of iNDF in the regulation of forage intake). Agriculture 5(3), 778–790. https://doi.org/10.3390/agriculture5030778 (2015).
Google Scholar
Singh, G. P. & Oosting, S. J. A model for describing the energy value of straws. Indian Dairyman XLI 322–327 (1992). https://agris.fao.org/agris-search/search.do?recordID=NL2012083374.
Reed, J. A. & Goe, M. R. Estimating the Nutritive Value of Cereal Crop Residues, Implications for developing feeding standards for draught animals. ILCA Bulletin (1989). https://hdl.handle.net/10568/4610.
Kumar, K. & Soni, A. Nutrient evaluation of common vegetation of Rajasthan, Pennisetum typholdenum, Cenchrus ciliaris, Cenchrus setigerus and Lasiurus sindicus. Int. J. Plant Anim. Environ. Sci. 4(1), 177–183 (2014).
Google Scholar
Kramberger, B. & Klemenčič, S. Effect of harvest date on the chemical composition and nutritive value of Cerastium holosteoides. Grass Forage Sci. 58(1), 12–16. https://doi.org/10.1046/j.1365-2494.2003.00346.x (2003).
Google Scholar
Raffrenato, E. et al. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. J. Dairy Sci. 100(10), 8119–8131. https://doi.org/10.3168/jds.2016-12364 (2017).
Google Scholar
McDonald, P. et al. Animal nutrition. Pearson UK https://doi.org/10.1088/1755-1315/951/1/012013 (2022).
Google Scholar
Brown, P. H., Graham, R. D. & Nicholas, D. G. D. The effect of manganese and nitrate supply on the level of phenolics and lignin in young wheat plant. Plant Soil 81, 437–440 (1984).
Google Scholar
Mbwile, R. P. & Uden, P. Effects of age and season on growth and nutritive value of Rhodes grass (Chloris gayana cv. Kunthi). Anim. Feed Sci. Technol. 65, 87–98 (1997).
Hameed, M., Naz, N., Ahmad, M. S. A. & Islam-ud-Din, R. A. Morphological adaptations of some grasses from the salt range, Pakistan. Pak. J. Bot. 40(4), 1571–1578 (2008).
Makkar, H. P. S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 49(3), 241–256. https://doi.org/10.1016/S0921-4488(03)00142-1 (2003).
Google Scholar
Patra, A. K. Nutritional management in organic livestock farming for improved ruminant health and production—an overview. Livestock Res. Rural Dev. 19(3), 41 (2007).
Akande, K. E., Doma, U. D., Agu, H. O. & Adamu, H. M. Major antinutrients found in plant protein sources: Their effect on nutrition. Pak. J. Nutr. 9(8), 827–832 (2010).
Google Scholar
Tadele, Y. Important anti-nutritional substances and inherent toxicants of feeds. Food Sci. Qual. Manage. 36, 40–47 (2015).
D’Mello, J.F. Farm animal metabolism and nutrition. Cabi Publishing. UK. (2000). https://www.researchgate.net/profile/Adegbola-Adesogan/publication/242151831_What_are_feeds_worth_A_critical_evaluation_of_selected_nutritive_value_methods/links/5852780c08aef7d030a4e95b/What-are-feeds-worth-A-critical-evaluation-of-selected-nutritive-value-methods.pdf.
Panhwar, F. Anti-nutritional Factors in Oil Seeds as Aflatoxin in Ground Nut (Digitalverlag GmbH, 2005).
Huang, J. et al. Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytol. 225(1), 26–36. https://doi.org/10.1111/nph.16173 (2020).
Google Scholar
Min, B. R., Barry, T. N., Attwood, G. T. & McNabb, W. C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages, a review. Anim. Feed Sci. Technol. 106(1–4), 3–19 (2003).
Google Scholar
Muetzel, S., Hoffmann, E. M. & Becker, K. Supplementation of barley straw with Sesbania pachycarpa leaves in vitro: Effects on fermentation variables and rumen microbial population structure quantified by ribosomal RNA targeted probes. Br. J. Nutr. 89(4), 445–453 (2003).
Google Scholar
Yao, L. H. et al. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 59(3), 113–122 (2004).
Google Scholar
Tracy, B. F. et al. Resilience in forage and grazinglands. Crop Sci. 58(1), 31–42 (2018).
Ehsen, S. et al. Secondary metabolites as anti-nutritional factors in locally used halophytic forage/fodder. Pak. J. Bot. 48(2), 629–636 (2016).
Google Scholar
Mudzwiri, M. Evaluation of traditional South African leafy plants for their safety in human consumption. Doctoral Dissertation (2007).
Francis, G., Kerem, Z., Makkar, H. P. & Becker, K. The biological action of saponins in animal systems, A review. Brit. J. Nutr. 88(6), 587–605 (2002).
Google Scholar
Duke, J. Phytochemical and ethnobotanical databases (2000).
Terrill, T. H., Rowan, A. M., Douglas, G. B. & Barry, T. N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 58(3), 321–329. https://doi.org/10.1002/jsfa.2740580306 (1992).
Google Scholar
Barry, T. N. & McNabb, W. C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 81(4), 263–272 (1999).
Google Scholar
Kallah, S. K., Bale, J. D., Abdullahi, U. S., Mohammed, I. R. & Lawai, R. Nutrient composition of native forms of semi-arid and dry-humid savannahs of Nigeria. Anim. Feed Sci. Technol. 84, 137–145 (2000).
Google Scholar
Megersa, E., Mengistu, A. & Asebe, G. Nutritional characterization of selected fodder species in Abol and Lare Districts of Gambella Region, Ethiopia. J. Nutr. Food Sci. 7(2), 2–6 (2017).
Van Soest, P. J. & Robertson, J. B. Analysis of Forages and Fibrous Foods (Cornell University, 1985).
Moore, K. J. & Jung, H. G. Lignin and fiber digestion. J. Range Manag. 54(4), 420–430 (2001).
Ramirez, R. G., Haenlein, G. F. W., Garcia-Castillo, C. G. & Nunez-Gonzalez, M. A. Protein, lignin and mineral contents and In-Situ dry matter digestibility of native Mexican grasses consumed by range goats. Small Ruminant Resour. 52(3), 261–269 (2004).
Ronquillo, M. G., Fondevila, M., Urdaneta, A. B. & Newman, Y. In vitro gas production from buffel grass Cenchrus ciliaris L. fermentation in relation to the cutting interval, the level of nitrogen fertilisation and the season of growth. Anim. Feed Sci. Technol. 72(1–2), 19–32 (1998).
Mlay, P. S. et al. Feed value of selected tropical grasses, legumes and concentrates. Vet. Arch. 76(1), 53–63 (2006).
Arif, M. et al. In vitro digestibility of selected forages in Sargodha district, Pakistan. In Vitro 6(3), 62–72 (2016).
Google Scholar
Revell, D. K., Baker, S. K. & Purser, B. B. Estimates of the intake and digestion of nitrogen by sheep grazing a Mediterranean pasture as it matures senesces. Aust. Soc. Anim. Prod. 20, 217–220 (1994).
Cherney, D. J. R., Mertens, D. R. & Moore, J. E. Intake and digestibility by withers as influenced by forage morphology at three levels of forage offering. J. Anim. Sci. 68(12), 4387–4399. https://doi.org/10.2527/1990.68124387x (1990).
Google Scholar
Lichtenberg, V. L. & Hemken, R. W. Hay quality. In: Grazing Management: An Ecological Perspective. Timber Press, Portland, Oregon USA (1985). https://www.pakbs.org/pjbot/PDFs/40(1)/PJB40(1)249.pdf.
de Oliveira, C. V. et al. Urea supplementation in rumen and post-rumen for cattle fed a low-quality tropical forage. Brit. J. Nutr. 124(11), 1166–1178. https://doi.org/10.1017/S0007114520002251 (2020).
Google Scholar
Rufino, L. M. et al. Effects of the amount and frequency of nitrogen supplementation on intake, digestion, and metabolism in cattle fed low-quality tropical grass. Anim. Feed Sci. Technol. 260, 114367 (2020).
Google Scholar
Njidda, A. A. Determining dry matter degradability of some semi-arid browse species of north-eastern Nigeria using the in vitro technique. Nigerian J. Basic Appl. Sci. 18(2), 160–167. https://doi.org/10.4314/njbas.v18i2.64306 (2014).
Google Scholar
Rakib-Uz-Zaman, S. M. et al. Ethnobotanical study and phytochemical profiling of Heptapleurum hypoleucum leaf extract and evaluation of its antimicrobial activities against diarrhea-causing bacteria. J. Genet. Engl. Biotechnol. https://doi.org/10.1186/s43141-020-00030-0 (2020).
Google Scholar
Rodrigues, E. & de Oliveira, D. R. Ethnopharmacology: A laboratory science?. Rodriguésia 71, 25 (2020).
Kellogg, E. A. Poaceae. In The Families and Genera of Vascular Plants (ed. Kubtizki, K.) (Springer, 2014).
Horwitz W. & Latimer G. W. Official methods of analysis of AOAC International. 18th Ed. Gaithersburg, Md. AOAC International (2005). https://doi.org/10.1071/EA9750045.
Makkar, H. P., Siddhuraju, P. & Becker, K. Plant Secondary Metabolites (Humana Press, 2007).
Tilley, J. M. & Terry, R. A. A two stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18(2), 104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x (1963).
Google Scholar
Source: Ecology - nature.com