in

Consistent diel activity patterns of forest mammals among tropical regions

  • Refinetti, R. The diversity of temporal niches in mammals. Biol. Rhythm Res. 39, 173–192 (2008).

    Google Scholar 

  • Hut, R. A., Kronfeld-Schor, N., van der Vinne, V. & De la Iglesia, H. In search of a temporal niche: Environmental factors. Prog. Brain Res. 199, 281–304 (2012).

    PubMed 

    Google Scholar 

  • Cox, D., Gardner, A. & Gaston, K. Diel niche variation in mammals associated with expanded trait space. Nat. Commun. 12, 1–10 (2021).

    Google Scholar 

  • Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (2019).

    PubMed 

    Google Scholar 

  • Baker, J. & Venditti, C. Rapid change in mammalian eye shape is explained by activity pattern. Curr. Biol. 29, 1082–1088. e1083 (2019).

    PubMed 

    Google Scholar 

  • Crompton, A., Taylor, C. R. & Jagger, J. A. Evolution of homeothermy in mammals. Nature 272, 333–336 (1978).

    ADS 
    PubMed 

    Google Scholar 

  • Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).

    PubMed 

    Google Scholar 

  • Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl Acad. Sci. USA 111, 13727–13732 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mccain, C. M. & King, S. R. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).

    ADS 

    Google Scholar 

  • Veldhuis, M. P. et al. Predation risk constrains herbivores’ adaptive capacity to warming. Nat. Ecol. Evol. 4, 1069–1074 (2020).

    PubMed 

    Google Scholar 

  • Riede, S. J., van der Vinne, V. & Hut, R. A. The flexible clock: Predictive and reactive homeostasis, energy balance and the circadian regulation of sleep–wake timing. J. Exp. Biol. 220, 738–749 (2017).

    PubMed 

    Google Scholar 

  • van der Vinne, V. et al. Maximising survival by shifting the daily timing of activity. Ecol. Lett. 22, 2097–2102 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Harper, G. & Bunbury, N. Invasive rats on tropical islands: Their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627 (2015).

    Google Scholar 

  • Sovie, A. R., Greene, D. U., Frock, C. F., Potash, A. D. & McCleery, R. A. Ephemeral temporal partitioning may facilitate coexistence in competing species. Anim. Behav. 150, 87–96 (2019).

    Google Scholar 

  • Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).

    ADS 
    PubMed 

    Google Scholar 

  • Richards, S. A. Temporal partitioning and aggression among foragers: Modeling the effects of stochasticity and individual state. Behav. Ecol. 13, 427–438 (2002).

    Google Scholar 

  • Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol., Evol., Syst. 34, 153–181 (2003).

    Google Scholar 

  • Sunarto, S., Kelly, M., Parakkasi, K. & Hutajulu, M. Cat coexistence in central Sumatra: Ecological characteristics, spatial and temporal overlap, and implications for management. J. Zool. 296, 104–115 (2015).

    Google Scholar 

  • Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Naturalist 153, 649–659 (1999).

    Google Scholar 

  • Beschta, R. L. & Ripple, W. J. Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biol. Conserv. 142, 2401–2414 (2009).

    Google Scholar 

  • Duffy, J. E. Biodiversity and ecosystem function: The consumer connection. Oikos 99, 201–219 (2002).

    Google Scholar 

  • Sinclair, A., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).

    ADS 
    PubMed 

    Google Scholar 

  • Cunningham, C. X., Scoleri, V., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Temporal partitioning of activity: Rising and falling top‐predator abundance triggers community‐wide shifts in diel activity. Ecography 42, 2157–2168 (2019).

    Google Scholar 

  • Hayward, M. W. & Slotow, R. Temporal partitioning of activity in large African carnivores: Tests of multiple hypotheses. South Afr. J. Wildl. Res. 39, 109–125 (2009).

    Google Scholar 

  • Monterroso, P., Alves, P. C. & Ferreras, P. Catch me if you can: Diel activity patterns of mammalian prey and predators. Ethology 119, 1044–1056 (2013).

    Google Scholar 

  • Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

    Google Scholar 

  • Rovero, F. et al. A standardized assessment of forest mammal communities reveals consistent functional composition and vulnerability across the tropics. Ecography 43, 75–84 (2020).

    Google Scholar 

  • Ahumada, J. A. et al. Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2703–2711 (2011).

    Google Scholar 

  • Zhang, J. et al. Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proc. R. Soc. B: Biol. Sci. 285, 20180949 (2018).

    Google Scholar 

  • Beaudrot, L. et al. Local temperature and ecological similarity drive distributional dynamics of tropical mammals worldwide. Glob. Ecol. Biogeogr. 28, 976–991 (2019).

    Google Scholar 

  • Janzen, D. H. Why mountain passes are higher in the tropics. Am. Naturalist 101, 233–249 (1967).

    Google Scholar 

  • Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B: Biol. Sci. 281, 20141097 (2014).

    Google Scholar 

  • Willmer, P., Stone, G. & Johnston, I. Environmental Physiology of Animals (John Wiley & Sons, 2009).

  • Cruz, P., Paviolo, A., Bó, R. F., Thompson, J. J. & Di Bitetti, M. S. Daily activity patterns and habitat use of the lowland tapir (Tapirus terrestris) in the Atlantic Forest. Mamm. Biol. 79, 376–383 (2014).

    Google Scholar 

  • Taylor, W. & Skinner, J. Adaptations of the aardvark for survival in the Karoo: A review. Trans. R. Soc. South Afr. 59, 105–108 (2004).

    Google Scholar 

  • Levy, O., Dayan, T., Porter, W. P. & Kronfeld‐Schor, N. Time and ecological resilience: Can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).

    Google Scholar 

  • Simpson, G. G. Splendid Isolation: The Curious History of South American Mammals Vol. 11 (Yale University Press, 1980).

  • Gutiérrez-González, C. E. & López-González, C. A. Jaguar interactions with pumas and prey at the northern edge of jaguars’ range. PeerJ 5, e2886 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Porfirio, G., Sarmento, P., Foster, V. & Fonseca, C. Activity patterns of jaguars and pumas and their relationship to those of their potential prey in the Brazilian Pantanal. Mammalia 81, 401–404 (2017).

    Google Scholar 

  • Foster, V. C. et al. Jaguar and puma activity patterns and predator‐prey interactions in four Brazilian biomes. Biotropica 45, 373–379 (2013).

    Google Scholar 

  • Ross, J., Hearn, A., Johnson, P. & Macdonald, D. Activity patterns and temporal avoidance by prey in response to S unda clouded leopard predation risk. J. Zool. 290, 96–106 (2013).

    Google Scholar 

  • Lima, S. L. Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48, 25–34 (1998).

    Google Scholar 

  • Santos, F. et al. Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS One 14, e0213671 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Herrera, H. et al. Time partitioning among jaguar Panthera onca, puma Puma concolor and ocelot Leopardus pardalis (Carnivora: Felidae) in Costa Rica’s dry and rainforests. Rev. de. Biol.ía Tropical 66, 1559–1568 (2018).

    Google Scholar 

  • Pratas‐Santiago, L. P., Gonçalves, A. L. S., da Maia Soares, A. & Spironello, W. R. The moon cycle effect on the activity patterns of ocelots and their prey. J. Zool. 299, 275–283 (2016).

    Google Scholar 

  • Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Espinosa, S. & Salvador, J. Hunters landscape accessibility and daily activity of ungulates in Yasuní Biosphere Reserve. Ecuad. Therya 8, 45–52 (2017).

    Google Scholar 

  • Butynski, T. M. Ecological survey of the impenetrable (Bwindi) forest, Uganda, and recommendations for its conservation and management. https://doi.org/10.13140/RG.2.1.1719.0487 (1984).

  • Rovero, F. & Ahumada, J. The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early warning system for tropical rain forests. Sci. Total Environ. 574, 914–923 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).

    ADS 
    PubMed 

    Google Scholar 

  • Gorczynski, D. et al. Tropical mammal functional diversity increases with productivity but decreases with anthropogenic disturbance. Proc. R. Soc. B 288, 20202098 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Frey, S., Fisher, J. T., Burton, A. C. & Volpe, J. P. Investigating animal activity patterns and temporal niche partitioning using camera‐trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 3, 123–132 (2017).

    Google Scholar 

  • Bivand, R. et al. Maptools: Tools for Handling Spatial Objects. R package version 1.1-4. http://maptools.r-forge.r-project.org/reference/index.html (2021).

  • Ensing, E. P. et al. GPS based daily activity patterns in European red deer and North American elk (Cervus elaphus): Indication for a weak circadian clock in ungulates. PLoS One 9, e106997 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vazquez, C., Rowcliffe, J. M., Spoelstra, K. & Jansen, P. A. Comparing diel activity patterns of wildlife across latitudes and seasons: Time transformations using day length. Methods Ecol. Evol. 10, 2057–2066 (2019).

    Google Scholar 

  • Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5, 1170–1179 (2014).

    Google Scholar 

  • Rowcliffe, J. M. Activity: Animal Activity Statistics. R package version 1.3.2. https://cran.r-project.org/package=activity (2022).

  • Faurby, S. et al. PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).

    PubMed 

    Google Scholar 

  • Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    Google Scholar 

  • Elff, M., Heisig, J. P., Schaeffer, M. & Shikano, S. Multilevel analysis with few clusters: Improving likelihood-based methods to provide unbiased estimates and accurate inference. Br. J. Polit. Sci. 51, 412–426 (2020).

  • Elff, M. Mclogit: mixed conditional logit models. R package version 0.5. 1. https://github.com/melff/mclogit/ (2018).

  • Burnham, K & Anderson, D. Model Selection and Multi-model Inference 2nd edn, Vol. 63, 10 (Springer-Verlag 2004).

  • Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, e22 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hopcraft, J. G. C., Olff, H. & Sinclair, A. Herbivores, resources, and risks: Alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 25, 119–128 (2010).

    PubMed 

    Google Scholar 

  • Meredith, M. & Ridout, M. Overlap: Estimates of coefficient of overlapping for animal activity patterns. R package version 0.2. 4, https://cran.r-project.org/package=overlap (2014).

  • Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric., Biol., Environ. Stat. 14, 322–337 (2009).

    MathSciNet 
    MATH 

    Google Scholar 

  • RStudio Team. RStudio: Integrated Development for R (PBC, Boston, MA, 2020).


  • Source: Ecology - nature.com

    Engineers solve a mystery on the path to smaller, lighter batteries

    MesopTroph, a database of trophic parameters to study interactions in mesopelagic food webs