in

Contrasting response of fungal versus bacterial residue accumulation within soil aggregates to long-term fertilization

  • Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    ADS 
    PubMed 

    Google Scholar 

  • Torn, M. S., Vitousek, P. M. & Trumbore, S. E. The influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling. Ecosystems 8, 352–372 (2005).

    Google Scholar 

  • Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding, X., Liang, C., Zhang, B., Yuan, Y. & Han, X. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil. Soil Biol. Biochem. 84, 137–146 (2015).

    Google Scholar 

  • Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).

    PubMed 

    Google Scholar 

  • Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).

    Google Scholar 

  • Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).

    Google Scholar 

  • Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Global Change Biol. 19, 988–995 (2013).

    ADS 

    Google Scholar 

  • Sokol, N. W. & Bradford, M. A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12, 46–53 (2019).

    ADS 

    Google Scholar 

  • Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).

    ADS 

    Google Scholar 

  • Simpson, A. J., Simpson, M. J., Smith, E. & Kelleher, B. P. Microbially derived inputs to soil organic matter: Are current estimates too low?. Environ. Sci. Technol. 41, 8070–8076 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Liang, C., Fujinuma, R. & Balser, T. C. Comparing PLFA and amino sugars for microbial analysis in an Upper Michigan old growth forest. Soil Biol. Biochem. 40, 2063–2065 (2008).

    Google Scholar 

  • Shao, P., Liang, C., Lynch, L., Xie, H. & Bao, X. Reforestation accelerates soil organic carbon accumulation: Evidence from microbial biomarkers. Soil Biol. Biochem. 131, 182–190 (2019).

    Google Scholar 

  • Ma, S. et al. Effects of seven-year nitrogen and phosphorus additions on soil microbial community structures and residues in a tropical forest in Hainan Island, China. Geoderma 361, 114034 (2020).

    ADS 

    Google Scholar 

  • Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fertil. Soils 29, 111–129 (1999).

    Google Scholar 

  • Kong, A. Y. Y. et al. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol. Biochem. 43, 20–30 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, K., Marhan, S., Kandeler, E. & Poll, C. Carbon flow from litter through soil microorganisms: From incorporation rates to mean residence times in bacteria and fungi. Soil Biol. Biochem. 115, 187–196 (2017).

    Google Scholar 

  • Amelung, W. Syntax of Referencing in Assessment Methods for Soil Carbon (Lewis Publishers, 2001).

    Google Scholar 

  • Joergensen, R. & Wichern, F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol. Biochem. 40, 2977–2991 (2008).

    Google Scholar 

  • Joergensen, R. G. Amino sugars as specific indices for fungal and bacterial residues in soil. Biol. Fert. Soils 54, 559–568 (2018).

    Google Scholar 

  • Wang, X. et al. Distinct regulation of microbial processes in the immobilization of labile carbon in different soils. Soil Biol. Biochem. 142, 107723 (2020).

    Google Scholar 

  • Wang, J., Chapman, S. J. & Yao, H. Incorporation of 13C-labelled rice rhizodeposition into soil microbial communities under different fertilizer applications. Appl. Soil Ecol. 101, 11–19 (2016).

    ADS 

    Google Scholar 

  • Cui, S. et al. Long-term fertilization management affects the C utilization from crop residues by the soil micro-food web. Plant Soil 429, 335–348 (2018).

    Google Scholar 

  • Liu, X., Zhang, X. & Herbert, S. Feeding China’s growing needs for grain. Nature 465, 420 (2010).

    ADS 
    PubMed 

    Google Scholar 

  • Edmeades, D. C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosys. 66, 165–180 (2003).

    Google Scholar 

  • Chaparro, J., Sheflin, A., Manter, D. & Vivanco, J. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).

    Google Scholar 

  • Jin, X. et al. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management. Geoderma 313, 154–162 (2018).

    ADS 

    Google Scholar 

  • Chen, X., Li, Z., Liu, M., Jiang, C. & Che, Y. Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years. J. Soil Sediment. 15, 292–301 (2014).

    Google Scholar 

  • Wang, Y. et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Appl. Soil Ecol. 111, 65–72 (2017).

    Google Scholar 

  • Joergensen, R. G., Mäder, P. & Fließbach, A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol. Fert. Soils 46, 303–307 (2010).

    Google Scholar 

  • Sun, H. et al. Soil microbial community and microbial residues respond positively to minimum tillage under organic farming in Southern Germany. Appl. Soil Ecol. 108, 16–24 (2016).

    Google Scholar 

  • Heijboer, A. et al. Plant biomass, soil microbial community structure and nitrogen cycling under different organic amendment regimes; A 15N tracer-based approach. Appl. Soil Ecol. 107, 251–260 (2016).

    Google Scholar 

  • Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).

    Google Scholar 

  • Wall, D. et al. Soil Ecology and Ecosystem Services (Oxford University Press, 2012).

    Google Scholar 

  • Helgason, B. L., Walley, F. L. & Germida, J. J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 46, 390–397 (2010).

    Google Scholar 

  • Blaud, A. et al. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Appl. Soil Ecol. 53, 1–9 (2012).

    Google Scholar 

  • Tisdall, J. M. & Oades, J. M. Organic matter and water stable aggregates in soils. Eur. J. Soil Sci. 33, 141–163 (1982).

    Google Scholar 

  • Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).

    ADS 

    Google Scholar 

  • Li, N. et al. Separation of soil microbial community structure by aggregate size to a large extent under agricultural practices during early pedogenesis of a Mollisol. Appl. Soil Ecol. 88, 9–20 (2015).

    Google Scholar 

  • Bidisha, M., Joerg, R. & Yakov, K. Effects of aggregation processes on distribution of aggregate size fractions and organic C content of a long-term fertilized soil. Eur. J. Soil Biol. 46, 365–370 (2010).

    Google Scholar 

  • Xiang, X. et al. Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization. Soil Till. Res. 196, 104491 (2020).

    Google Scholar 

  • Jin, X. et al. Long-term plastic film mulching and fertilization treatments changed the annual distribution of residual maize straw C in soil aggregates under field conditions: Characterization by 13C tracing. J. Soils Sediment. 18, 169–178 (2018).

    Google Scholar 

  • Kemper, W. & Rosenau, R. Syntax of referencing. In Methods of Soil Analysis (ed. Klute, A.) (ASA and SSSA, 1986).

    Google Scholar 

  • Bossio, D. A. & Scow, K. M. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Appl. Environ. Microbiol. 61, 4043–4050 (1995).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Denef, K. et al. Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4, 769–779 (2007).

    ADS 

    Google Scholar 

  • Tavi, N. M. et al. Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using 13CO2 pulse-chase labelling combined with 13C-PLFA profiling. Soil Biol. Biochem. 58, 207–215 (2013).

    Google Scholar 

  • Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).

    Google Scholar 

  • Pan, F., Li, Y., Chapman, S. J., Khan, S. & Yao, H. Microbial utilization of rice straw and its derived biochar in a paddy soil. Sci. Total Environ. 559, 15–23 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Olsson, P. A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbial Ecol. 29, 303–310 (1999).

    Google Scholar 

  • Zhang, X. & Amelung, W. Gas Chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol. Biochem. 28, 1201–1206 (1996).

    Google Scholar 

  • Zhang, X. et al. Land-use effects on amino sugars in particle size fractions of an Argiudoll. Appl. Soil Ecol. 11, 271–275 (1999).

    Google Scholar 

  • van Groenigen, K.-J. et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol. Biochem. 42, 48–55 (2010).

    Google Scholar 

  • Liang, C., Amelung, W., Lehmann, J. & Kastner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biol. 25, 3578–3590 (2019).

    ADS 

    Google Scholar 

  • Engelking, B., Flessa, H. & Joergensen, R. G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol. Biochem. 39, 2111–2118 (2007).

    Google Scholar 

  • Chander, K. & Joergensen, R. G. Decomposition of 14C glucose in two soils with different amounts of heavy metal contamination. Soil Biol. Biochem. 33, 1811–1816 (2001).

    Google Scholar 

  • Zhu, Z. et al. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil – part 2: turnover and microbial utilization. Plant Soil. 416, 243–257 (2017).

    Google Scholar 

  • Appuhn, A. & Joergensen, R. Microbial colonisation of roots as a function of plant species. Soil Biol. Biochem. 38, 1040–1051 (2006).

    Google Scholar 

  • Huang, Y., Liang, C., Duan, X., Chen, H. & Li, D. Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma 353, 340–346 (2019).

    ADS 

    Google Scholar 

  • Liang, C. et al. Microorganisms and their residues under restored perennial grassland communities of varying diversity. Soil Biol. Biochem. 103, 192–200 (2016).

    Google Scholar 

  • Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Veresoglou, S. D., Chen, B. & Rillig, M. C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 46, 53–62 (2012).

    Google Scholar 

  • Treseder, K. K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355 (2004).

    PubMed 

    Google Scholar 

  • Xu, Y. et al. Microbial assimilation dynamics differs but total mineralization from added root and shoot residues is similar in agricultural Alfsols. Soil Biol. Biochem. 148, 107901 (2020).

    Google Scholar 

  • Chenu, C. & Stotzky, G. Syntax of referencing in Interactions between soil particles and microorganisms (eds. Huang, P., Bollag, J. & Senesi, N.) 3–39 (Wiley-VCH, 2002).

  • Chantigny, M., Angers, D., Prévost, D., Vézina, L.-P. & Chalifour, F. Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Sci. Soc. Am. J. 61, 262–267 (1997).

    ADS 

    Google Scholar 

  • Liang, C., Duncan, D., Balser, T., Tiedje, J. & Jackson, R. Soil microbial residue storage linked to soil legacy under biofuel cropping systems in southern Wisconsin, USA. Soil Biol. Biochem. 57, 939–942 (2013).

    Google Scholar 

  • Feng, Y. et al. Temperature thresholds drive the global distribution of soil fungal decomposers. Glaobal Change Biol. 28, 2779–2789 (2022).

    Google Scholar 

  • An, T. et al. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling. Soil Biol. Biochem. 80, 53–61 (2015).

    Google Scholar 

  • Lauer, F., Kösters, R., du Preez, C. C. & Amelung, W. Microbial residues as indicators of soil restoration in South African secondary pastures. Soil Biol. Biochem. 43, 787–794 (2011).

    Google Scholar 


  • Source: Ecology - nature.com

    Doubling down on sustainability innovation in Kendall Square

    Simplifying the production of lithium-ion batteries