in

Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies

[adace-ad id="91168"]
  • 1.

    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. USA 113, 12757–12762 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Google Scholar 

  • 4.

    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Norby, R. J. et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl Acad. Sci. USA 102, 18052–18056 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Mooney, H. A., Drake, B. G., Luxmoore, R. J., Oechel, W. C. & Pitelka, L. F. Predicting ecosystem responses to elevated CO2 concentrations. Bioscience 41, 96–104 (1991).

    Google Scholar 

  • 7.

    Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Jackson, R. B., Sala, O. E., Field, C. B. & Mooney, H. A. CO2 alters water use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia 98, 257–262 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Morgan, J. A. et al. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140, 11–25 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    CAS 

    Google Scholar 

  • 12.

    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    PubMed 

    Google Scholar 

  • 14.

    Karnosky, D. F. et al. Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct. Ecol. 17, 289–304 (2003).

    Google Scholar 

  • 15.

    Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Syst. 42, 181–203 (2011).

    Google Scholar 

  • 16.

    Nowak, R. S., Ellsworth, D. S. & Smith, S. D. Functional responses of plants to elevated atmospheric CO2— do photosynthetic and productivity data from FACE experiments support early predictions? N. Phytol. 162, 253–280 (2004).

    Google Scholar 

  • 17.

    Ainsworth, E. A. & Long, S. P. What have we learned from fifteen years of free air carbon dioxide enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. N. Phytol. 165, 351–372 (2004).

    Google Scholar 

  • 18.

    Lee, T. D., Tjoelker, M. G., Ellsworth, D. S. & Reich, P. B. Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. N. Phytol. 150, 405–418 (2001).

    CAS 

    Google Scholar 

  • 19.

    Warren, J. M. et al. Ecohydrological impact of reduced stomatal conductance in forests exposed to elevated CO2. Ecohydrology 4, 196–210 (2011).

    Google Scholar 

  • 20.

    Morgan, J. A. et al. CO2 enhances productivity, alters species composition, and reduces digestibility of shortgrass steppe vegetation. Ecol. Appl. 14, 208–219 (2004).

    Google Scholar 

  • 21.

    Dukes, J. S. et al. Responses of grassland production to single and multiple global environmental changes. PLoS Biol. 3, 1829–1839 (2005).

    CAS 

    Google Scholar 

  • 22.

    Hovenden, M. J., Newton, P. C. D. & Wills, K. E. Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature 511, 583–586 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).

    CAS 

    Google Scholar 

  • 24.

    Hebeisen, T. et al. Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management. Glob. Change Biol. 3, 149–160 (1997).

    Google Scholar 

  • 25.

    Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the cost of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).

    PubMed 

    Google Scholar 

  • 26.

    Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7, 279–282 (2017).

    CAS 

    Google Scholar 

  • 27.

    Ponce Campos, G. E. et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494, 350–352 (2014).

    Google Scholar 

  • 28.

    Oren, R., Ewers, B. E., Todd, P., Phillips, N. & Katul, G. Water balance delineates the soil layer in which moisture affects canopy conductance. Ecol. Appl. 8, 990–1002 (1998).

    Google Scholar 

  • 29.

    Stanton, N. L. The underground in grasslands. Annu. Rev. Ecol. Syst. 19, 573–589 (1988).

    Google Scholar 

  • 30.

    Owensby, C. E., Ham, J. M., Knapp, A. K. & Auen, L. M. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Glob. Change Biol. 5, 497–506 (1999).

    Google Scholar 

  • 31.

    McCarthy, H. R. et al. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Glob. Change Biol. 13, 2479–2497 (2007).

    Google Scholar 

  • 32.

    McCathy, H. R., Oren, R., Finzi, A. C. & Jonsen, K. H. Canopy leaf area constrains CO2-induced enhancement of productivity and partitioning among aboveground carbon pools. Proc. Natl Acad. Sci. USA 103, 19356–19361 (2006).

    Google Scholar 

  • 33.

    Tor-ngern, P. et al. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy. N. Phytol. 205, 518–525 (2015).

    CAS 

    Google Scholar 

  • 34.

    Naumburg, E. et al. Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years. Glob. Change Biol. 9, 276–285 (2003).

    Google Scholar 

  • 35.

    Housman, D. C. et al. Increases in desert shrub productivity under elevated carbon dioxide vary with water availability. Ecosystems 9, 374–385 (2006).

    Google Scholar 

  • 36.

    Warren, J. M., Norby, R. J. & Wullschleger, S. D. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130 (2011).

    PubMed 

    Google Scholar 

  • 37.

    Ellsworth, D. S. et al. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke Face. Glob. Change Biol. 18, 223–242 (2012).

    Google Scholar 

  • 38.

    Mueller, K. E. et al. Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. Ecol. Lett. 19, 956–966 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Morgan, J. A., Milchunas, D. G., LeCain, D. R., West, M. & Mosier, A. R. Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proc. Natl Acad. Sci. USA 104, 14724–14729 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Farquhar, G. D. et al. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    De Graaff, M. A., Van Groenigen, K. J., Six, J., Hungate, B. & Van Kessel, C. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob. Change Biol. 12, 2077–2091 (2006).

    Google Scholar 

  • 42.

    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Bader, M. K. F. et al. Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J. Ecol. 101, 1509–1519 (2013).

    CAS 

    Google Scholar 

  • 44.

    Klein, T. et al. Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. J. Ecol. 104, 1720–1733 (2016).

    CAS 

    Google Scholar 

  • 45.

    McCarthy, M. C. & Enquist, B. J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21, 713–720 (2007).

    Google Scholar 

  • 46.

    Palmroth, S. et al. Aboveground sink strength in forests controls the allocation of carbon below ground and its CO2-induced enhancement. Proc. Natl Acad. Sci. USA 103, 19362–19367 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Wolf, A., Field, C. B. & Berry, J. A. Allometric growth and allocation in forests: a perspective from FLUXNET. Ecol. Appl. 21, 1546–1556 (2011).

    PubMed 

    Google Scholar 

  • 48.

    Hovenden, M. J. et al. Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nat. Plants 5, 167–173 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Phillips, O. L. et al. Increasing dominance of large lianas in Amazonian forests. Nature 418, 770–774 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Zotz, G., Cueni, N. & Körner, C. In situ growth stimulation of a temperate zone liana (Hedera helix) in elevated CO2. Funct. Ecol. 20, 763–769 (2006).

    Google Scholar 

  • 52.

    Smith, S. D. et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystems. Nature 408, 79–81 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Saintilan, N. & Rogers, K. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings. N. Phytol. 205, 1062–1070 (2015).

    Google Scholar 

  • 54.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–003 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Flato G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–866 (Cambridge Univ. Press, 2013).

  • 57.

    https://www.cedarcreek.umn.edu/research/experiments/e141

  • 58.

    https://facedata.ornl.gov/ornl/

  • 59.

    Hymus, G. J. et al. Effects of elevated atmospheric CO2 on net ecosystem CO2 exchange of a scrub-oak ecosystem. Glob. Change Biol. 9, 1802–1812 (2003).

    Google Scholar 

  • 60.

    Riley, R. D., Lambert, P. C. & Abo-Zaid, G. Meta-analysis of individual participant data: rationale, conduct, and reporting. Br. Med. J. 340, c221 (2010).

    Google Scholar 

  • 61.

    Millar, R. B. & Anderson, M. J. Remedies for pseudo-replication. Fish. Res. 70, 397–407 (2004).

    Google Scholar 

  • 62.

    Cashman, K. D. et al. Improved dietary guidelines for vitamin D: application of individual participant data (IPD)-level meta-regression analyses. Nutrients 9, 469 (2017).

    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Pricing carbon, valuing people

    Experience-dependent learning of behavioral laterality in the scale-eating cichlid Perissodus microlepis occurs during the early developmental stage