in

Experience-dependent learning of behavioral laterality in the scale-eating cichlid Perissodus microlepis occurs during the early developmental stage

[adace-ad id="91168"]
  • 1.

    Rogers, L. J. & Andrew, R. J. Comparative Vertebrate Lateralization (Cambridge University Press, 2002).

    Google Scholar 

  • 2.

    Bisazza, A. & Brown, C. Lateralization of cognitive functions in fish. In Fish Cognition and Behavior 2nd edn (eds Brown, C. et al.) 298–324 (Wiley-Blackwell, 2011).

    Google Scholar 

  • 3.

    Rogers, L. J., Vallortigara, G. & Andrew, R. J. Divided Brains: The Biology and Behaviour of Brain Asymmetries (Cambridge University Press, 2013).

    Google Scholar 

  • 4.

    Versace, E. & Vallortigara, G. Forelimb preferences in human beings and other species: multiple models for testing hypotheses on lateralization. Front. Psychol. 6, 233 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Vallortigara, G. & Versace, E. Laterality at the neural, cognitive, and behavioral levels. In APA Handbook of Comparative Psychology: Vol. 1. Basic Concepts, Methods, Neural Substrate, and Behavior (eds. Call, J., Burghardt, G.M., Pepperberg, I.M., Snowdon, C.T. & Zentall, T.) 557–577 (2017).

  • 6.

    Frasnellis, E., Vallortigara, G. & Rogers, L. J. Left-right asymmetries of behaviour and nervous system in invertebrates. Neurosci. Biobehav. Rev. 36, 1273–1291 (2012).

    Google Scholar 

  • 7.

    Byrne, R. A., Kuba, M. J. & Meisel, D. V. Lateralized eye use in Octopus vulgaris shows antisymmetrical distribution. Anim. Behav. 68, 1107–1114 (2004).

    Google Scholar 

  • 8.

    Byrne, R. A., Kuba, M. J., Meisel, D. V., Griebel, U. & Mather, J. A. Octopus arm choice is strongly influenced by eye use. Behav. Brain Res. 172, 195–201 (2006).

    PubMed 

    Google Scholar 

  • 9.

    Lucky, N. S., Ihara, R., Yamaoka, K. & Hori, M. Behavioral laterality and morphological asymmetry in the Cuttlefish, Sepia lycidas. Zoolog. Sci. 29, 286–292 (2012).

    PubMed 

    Google Scholar 

  • 10.

    Stancher, G., Sovrano, V. A. & Vallortigara, G. Chapter 2-Motor asymmetries in fishes, amphibians, and reptiles. In Progress in Brain Research (eds Forrester, G. S. et al.) 33–56 (Elsevier, 2018).

    Google Scholar 

  • 11.

    Miletto Petrazzini, M. E., Sovrano, V. A., Vallortigara, G. & Messina, A. Brain and behavioral asymmetry: A lesson from fish. Front. Neuroanat. 14, 11 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Roy, E. A., Bryden, P. & Cavill, S. Hand differences in pegboard performance through development. Brain Cogn. 53, 315–317 (2003).

    PubMed 

    Google Scholar 

  • 13.

    Michel, G. F., Tyler, A. N., Ferre, C. & Sheu, C. F. The manifestation of infant hand-use preferences when reaching for objects during the seven- to thirteen-month age period. Dev. Psychobiol. 48, 436–443 (2006).

    PubMed 

    Google Scholar 

  • 14.

    Porac, C. & Searleman, A. The effects of hand preference side and hand preference switch history on measures of psychological and physical well-being and cognitive performance in a sample of older adult right-and left-handers. Neuropsychologia 40, 2074–2083 (2002).

    PubMed 

    Google Scholar 

  • 15.

    Rogers, L. J. Light experience and asymmetry of brain function in chickens. Nature 297, 223–225 (1982).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Rogers, L. J. Development and function of lateralization in the avian brain. Brain Res. Bull. 76, 235–244 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • 17.

    Rogers, L. J. Asymmetry of motor behavior and sensory perception: Which comes first?. Symmetry 12, 690 (2020).

    Google Scholar 

  • 18.

    Tang, A. C. & Verstynen, T. Early life environment modulates ‘handedness’ in rats. Behav. Brain Res. 131, 1–7 (2002).

    PubMed 

    Google Scholar 

  • 19.

    Bisazza, A., Cantalupo, C. & Vallortigara, G. Lateral asymmetries during escape behavior in a species of teleost fish (Jenynsia lineata). Physiol. Behav. 61, 31–35 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Bisazza, A., Dadda, M. & Cantalupo, C. Further evidence for mirror-reversed laterality in lines of fish selected for leftward or rightward turning when facing a predator model. Behav. Brain Res. 156, 165–171 (2005).

    PubMed 

    Google Scholar 

  • 21.

    Izvekov, E. I. & Nepomnyashchikh, V. A. Laterality of the initial stage of escape response in roach (Rutilus rutilus) upon impact of alternating electric current. Biol. Bull. 35, 30–36 (2008).

    Google Scholar 

  • 22.

    Hata, H. & Hori, M. Inheritance patterns of morphological laterality in mouth opening of zebrafish, Danio rerio. Laterality 17, 741–754 (2012).

    PubMed 

    Google Scholar 

  • 23.

    Lee, H. J., Kusche, H. & Meyer, A. Handed foraging behavior in scale-eating Cichlid Fish: Its potential role in shaping morphological asymmetry. PLoS ONE 7, e44670 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Yasugi, M. & Hori, M. Lateralized behavior in the attacks of largemouth bass on Rhinogobius gobies corresponding to their morphological antisymmetry. J. Exp. Biol. 215, 2390–2398 (2012).

    PubMed 

    Google Scholar 

  • 25.

    Matsui, S., Takeuchi, Y. & Hori, M. Relation between morphological antisymmetry and behavioral laterality in a Poeciliid Fish. Zoolog. Sci. 30, 613–618 (2013).

    PubMed 

    Google Scholar 

  • 26.

    Takeuchi, Y. et al. Specialized movement and laterality of fin-biting behaviour in Genyochromis mento in Lake Malawi. J. Exp. Biol. 222, 191676 (2019).

    Google Scholar 

  • 27.

    Sorvano, V. A., Rainoldi, C., Bisazza, A. & Vallortigara, G. Roots of brain specializations: Preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav. Brain Res. 106, 175–180 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Sovrano, V. A., Bisazza, A. & Vallortigara, G. Lateralization of response to social stimuli in fishes: A comparison between different methods and species. Physiol. Behav. 74, 237–244 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Raffini, F. & Meyer, A. A comprehensive overview of the developmental basis and adaptive significance of a textbook polymorphism: head asymmetry in the cichlid fish Perissodus microlepis. Hydrobiologia 832, 65–84 (2019).

    Google Scholar 

  • 30.

    Berlinghieri, F., Panizzon, P., Penry-Williams, I. L. & Brown, C. Laterality and fish welfare-a review. Appl. Anim. Behav. Sci. 236, 105239 (2021).

    Google Scholar 

  • 31.

    Koblmüller, S., Egger, B., Sturmbauer, C. & Sefc, K. M. Evolutionary history of Lake Tanganyika’s scale-eating cichlid fishes. Mol. Phylogenet. Evol. 44, 1295–1305 (2007).

    PubMed 

    Google Scholar 

  • 32.

    Takeuchi, Y., Ochi, H., Kohda, M., Sinyinza, D. & Hori, M. A 20-year census of a rocky littoral fish community in Lake Tanganyika. Ecol. Freshw. Fish 19, 239–248 (2010).

    Google Scholar 

  • 33.

    Poll, M. Poissons Cichlidae. Resultats scientifiques, Exploration hydrobiologique du Lac Tanganyika. Inst. R. Sci. Nat. Belg. 3, 1–619 (1956).

    Google Scholar 

  • 34.

    Liem, K. & Stewart, D. Evolution of scale-eating cichlid fishes of Lake Tanganyika: a generic revision with a description of a new species. Bull. Mus. Comp. Zool. 147, 319–350 (1976).

    Google Scholar 

  • 35.

    Hori, M. Frequency-dependent natural-selection in the handedness of scale-eating cichlid fish. Science 260, 216–219 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Takeuchi, Y., Hori, M. & Oda, Y. Lateralized kinematics of predation behavior in a Lake Tanganyika scale-eating cichlid fish. PLoS ONE 7, e29272 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Hori, M., Ochi, H. & Kohda, M. Inheritance pattern of lateral dimorphism in two cichlids (a scale eater, Perissodus microlepis, and an herbivore, Neolamprologus moorii) in Lake Tanganyika. Zoolog. Sci. 24, 486–492 (2007).

    PubMed 

    Google Scholar 

  • 38.

    Raffini, F., Fruciano, C., Franchini, P. & Meyer, A. Towards understanding the genetic basis of mouth asymmetry in the scale-eating cichlid Perissodus microlepis. Mol. Ecol. 26, 77–91 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Takeuchi, Y., Hori, M., Tada, S. & Oda, Y. Acquisition of lateralized predation behavior associated with development of mouth asymmetry in a Lake Tanganyika scale-eating cichlid fish. PLoS ONE 11, e0147476 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Takeuchi, Y. & Oda, Y. Lateralized scale-eating behaviour of cichlid is acquired by learning to use the naturally stronger side. Sci. Rep. 7, 8984 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Brainard, M. S. & Doupe, A. J. What songbirds teach us about learning. Nature 417, 351–358 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Nelson, D. A., Marler, P. & Palleroni, A. A comparative approach to vocal learning: Intraspecific variation in the learning process. Anim. Behav. 50, 83–97 (1995).

    Google Scholar 

  • 43.

    Chaiken, M., Böhner, J. & Marler, P. Song acquisition in European starlings, Sturnus vulgaris: a comparison of the songs of live-tutored, tape-tutored, untutored, and wild-caught males. Anim. Behav. 46, 1079–1090 (1993).

    Google Scholar 

  • 44.

    Todt, D. & Böhner, J. Former experience can modify social selectivity during song learning in the nightingale (Luscinia megarhynchos). Ethology 97, 169–176 (1994).

    Google Scholar 

  • 45.

    Schneirla, T.C. The concept of development in comparative psychology. Concept Dev. 78–108 (1957).

  • 46.

    Alcock, J. Animal Behavior: An Evolutionary Approach (Sinauer Associates, 2001).

    Google Scholar 

  • 47.

    Nshombo, M., Yanagisawa, Y. & Nagoshi, M. Scale-eating in Perissodus microlepis (Cichlidae) and change of its food-habits with growth. Jpn. J. Ichthyol. 32, 66–73 (1985).

    Google Scholar 

  • 48.

    Zar, J. H. Biostatistical Analysis (Pearson Education, 1999).

    Google Scholar 

  • 49.

    Morishita, H. & Hensch, T. K. Critical period revisited: impact on vision. Curr. Opin. Neurobiol. 18, 101–107 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Hess, E. H. Imprinting: Early Experience and the Developmental Psychobiology of Attachment (Van Norstrand, 1973).

    Google Scholar 

  • 51.

    Scott, J. P. Critical periods (Dowden, Hutchinson & Ross, 1978).

    Google Scholar 

  • 52.

    Kroodsma, D. Ontogeny of bird song. In Behavioral Development, 518–532 (Cambridge University Press, 1981).

  • 53.

    Rosa-Salva, O. et al. Sensitive periods for social development: Interactions between predisposed and learned mechanisms. Cognition 213, 104552 (2021).

    PubMed 

    Google Scholar 

  • 54.

    Vallortigara, G. Born Knowing: Imprinting and the Origins of Knowledge (MIT Press, 2021).

    Google Scholar 

  • 55.

    Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Penfield, W. & Roberts, L. Speech and Brain Mechanisms (Princeton University Press, 2014).

    Google Scholar 

  • 57.

    Rauschecker, J. P. & Singer, W. The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. J. Physiol. 310, 215–239 (1981).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Pasternak, T. & Leinen, L. Pattern and motion vision in cats with selective loss of cortical directional selectivity. J. Neurosci. 6, 938–945 (1986).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Rauschecker, J. P. & Schrader, W. Effects of monocular strobe rearing on kitten striate cortex. Exp. Brain Res. 68, 525–532 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Sengpiel, F., Stawinski, P. & Bonhoeffer, T. Influence of experience on orientation maps in cat visual cortex. Nat. Neurosci. 2, 727–732 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Marler, P. R. & Slabbekoorn, H. Nature’s Music: The Science of Birdsong (Elsevier, 2004).

    Google Scholar 

  • 62.

    Zann, R. Vocal learning in wild and domesticated zebra finches: signature cues for kin recognition or epiphenomena? In Social Influences on Vocal Development (eds Snowdon, C. T. & Hausberger, M.) 85–97 (Cambridge University Press, 1997).

    Google Scholar 

  • 63.

    Curtiss, S. The Case of Genie, A Modern Day ‘Wild Child’ (Academic Press, 1977).

    Google Scholar 

  • 64.

    Pinker, S. The Language Instinct: The New Science of Language and Mind Vol. 7529 (Penguin, 1995).

    Google Scholar 

  • 65.

    Lenneberg, E. H. The biological foundations of language. Hosp. Pract. 2, 59–67 (1967).

    Google Scholar 

  • 66.

    Patkowski, M. S. The sensitive period for the acquisition of syntax in a second language 1. Lang Learn. 30, 449–468 (1980).

    Google Scholar 

  • 67.

    Johnson, J. S. & Newport, E. L. Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cogn. Psychol. 21, 60–99 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Carroll, S. B., Greinier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell Science, 2001).

    Google Scholar 

  • 69.

    Evidence from genes to behavior. Wullimann, MF. & Mueller T. Teleostean and mammalian forebrains contrasted. J. Comp. Neurol. 475, 143–162 (2004).

    Google Scholar 

  • 70.

    Salas, C. et al. Neuropsychology of learning and memory in teleost fish. Zebrafish 3, 157–171 (2006).

    PubMed 

    Google Scholar 

  • 71.

    Mills, E. L., Widzowski, D. V. & Jones, S. R. Food conditioning and prey selection by young yellow perch (Perca flavescens). Can. J. Fish. Aquat. Sci. 44, 549–555 (1987).

    Google Scholar 

  • 72.

    Warburton, K. Learning of foraging skills by fish. Fish Fish. 4, 203–215 (2003).

    Google Scholar 

  • 73.

    Lee, H. J. et al. Lateralized feeding behavior is associated with asymmetrical neuroanatomy and lateralized gene expressions in the brain in scale-eating cichlid fish. Genome Biol. Evol. 9, 3122–3136 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Takeuchi, Y., Ishikawa, A., Oda, Y. & Kitano, J. Lateralized expression of left-right axis formation genes is shared by adult brains of lefty and righty scale-eating cichlids. Comp. Biochem. Physiol. D 28, 99–106 (2018).

    CAS 

    Google Scholar 

  • 75.

    Raffini, F., Fruciano, C. & Meyer, A. Morphological and genetic correlates in the left–right asymmetric scale-eating cichlid fish of Lake Tanganyika. Biol. J. Linn. Soc. 124, 67–84 (2018).

    Google Scholar 

  • 76.

    Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Cartner, S. C. et al. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications (Academic Press, 2020).

    Google Scholar 

  • 78.

    Takahashi, R., Moriwaki, T. & Hori, M. Foraging behaviour and functional morphology of two scale-eating cichlids from Lake Tanganyika. J. Fish Biol. 70, 1458–1469 (2007).

    Google Scholar 

  • 79.

    Sazima, I. Scale-eating in characoids and other fishes. Environ. Biol. Fish. 9, 87–101 (1983).

    Google Scholar 

  • 80.

    Webb, P. W. Acceleration performance of rainbow trout Salmo gairdneri and green sunfish Lepomis cyanellus. J. Exp. Biol. 63, 451–465 (1975).

    Google Scholar 

  • 81.

    Wöhl, S. & Schuster, S. The predictive start of hunting archer fish: a flexible and precise motor pattern performed with the kinematics of an escape C-start. J. Exp. Biol. 210, 311–324 (2007).

    PubMed 

    Google Scholar 

  • 82.

    Vallortigara, G. & Rogers, L. J. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 28, 575–589 (2005) (discussion 589-633).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Unique mobile elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes

    Biofilm matrix cloaks bacterial quorum sensing chemoattractants from predator detection