in

Contrasting sea ice conditions shape microbial food webs in Hudson Bay (Canadian Arctic)

  • Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett. 2013;40:732–7.

    Google Scholar 

  • Stroeve J, Notz D. Changing state of Arctic sea ice across all seasons. Environ Res Lett. 2018;13:103001.

    Google Scholar 

  • Macdonald RW, Kuzyk ZZA. The Hudson Bay system: a northern inland sea in transition. J Mar Syst. 2011;88:337–40.

    Google Scholar 

  • Serreze MC, Barry RG. Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change. 2011;77:85–96.

    Google Scholar 

  • Hochheim KP, Barber DG. An update on the ice climatology of the Hudson Bay system. Arctic, Antarctic, and Alpine Research. 2014;46:66–83.

    Google Scholar 

  • Gagnon AS, Gough WA. Climate change scenarios for the Hudson Bay region: an intermodel comparison. Climatic Change. 2005;69:269–97.

    Google Scholar 

  • Bring A, Shiklomanov A, Lammers RB. Pan-Arctic river discharge: prioritizing monitoring of future climate change hot spots. Earths Future. 2017;5:72–92.

    Google Scholar 

  • Comeau AM, Li WKW, Tremblay JÉ, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One. 2011;6:e27492.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li W, McLaughlin F, Lovejoy C, Carmack E. Smallest algae thrive as the Arctic Ocean freshens. Science. 2009;326:539.

    PubMed 

    Google Scholar 

  • Ji R, Jin M, Varpe Ø. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob Change Biol. 2013;19:734–41.

    Google Scholar 

  • Ardyna M, Mundy C, Mills M, Oziel L, Lacour L, Verin G, et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem Sci Anthr. 2020;8:e30.

    Google Scholar 

  • Kahru M, Brotas V, Manzano-Sarabia M, Mitchell BG. Are phytoplankton blooms occurring earlier in the Arctic? Glob Change Biol. 2011;17:1733–9.

    Google Scholar 

  • Barbedo L, Bélanger S, Tremblay J. Climate control of sea-ice edge phytoplankton blooms in the Hudson Bay system. Elem Sci Anthr. 2020;8:1.

    Google Scholar 

  • Matthes LC, Ehn JK, Dalman LA, Babb DG, Peeken I, Harasyn M, et al. Environmental drivers of spring primary production in Hudson Bay. Elem Sci Anthr. 2021;9:00160.

    Google Scholar 

  • Harvey M, Therriault JC, Simard N. Late-summer distribution of phytoplankton in relation to water mass characteristics in Hudson Bay and Hudson Strait (Canada). Can J Fish Aquat Sci. 1997;54:1937–52.

    Google Scholar 

  • Ferland J, Gosselin M, Starr M. Environmental control of summer primary production in the Hudson Bay system: The role of stratification. J Mar Syst. 2011;88:385–400.

    Google Scholar 

  • Raven JA. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct Ecol. 1998;12:503–13.

    Google Scholar 

  • Tilman D, Kilham SS, Kilham P. Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst. 1982;13:349–72.

    Google Scholar 

  • Onda DFL, Medrinal E, Comeau AM, Thaler M, Babin M, Lovejoy C. Seasonal and interannual changes in ciliate and dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front Mar Sci. 2017;4:16.

    Google Scholar 

  • Campbell K, Mundy CJ, Belzile C, Delaforge A, Rysgaard S. Seasonal dynamics of algal and bacterial communities in Arctic sea ice under variable snow cover. Polar Biol. 2018;41:41–58.

    Google Scholar 

  • Forest A, Tremblay JÉ, Gratton Y, Martin J, Gagnon J, Darnis G, et al. Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): a synthesis of field measurements and inverse modeling analyses. Prog Oceanogr. 2011;91:410–36.

    Google Scholar 

  • Buchan A, Lecleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.

    PubMed 

    Google Scholar 

  • Cole JJ, Likens GE, Strayer DL. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol Oceanogr. 1982;27:1080–90.

    Google Scholar 

  • Horňák K, Kasalický V, Šimek K, Grossart HP. Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria. Environ Microbiol. 2017;19:4519–35.

    PubMed 

    Google Scholar 

  • Šimek K, Kasalický V, Zapomělová E, Horňák K. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol. 2011;77:7307–15.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams TJ, Wilkins D, Long E, Evans F, Demaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.

    PubMed 

    Google Scholar 

  • Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrechet A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.

    PubMed 

    Google Scholar 

  • Armengol L, Calbet A, Franchy G, Rodríguez-Santos A, Hernández-León S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci Rep. 2019;9:1–19.

    Google Scholar 

  • Joly S, Senneville S, Caya D, Saucier FJ. Sensitivity of Hudson Bay Sea ice and ocean climate to atmospheric temperature forcing. Clim Dyn. 2011;36:1835–49.

    Google Scholar 

  • Kirillov S, Babb D, Dmitrenko I, Landy D, Lukovich JV, Ehn J, et al. Atmospheric forcing drives the winter sea ice thickness asymmetry of Hudson Bay. Geophys Res Oceans. 2020;125:1–12.

    Google Scholar 

  • Tivy A, Howell SEL, Alt B, McCourt S, Chagnon R, Crocker G, et al. Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960-2008 and 1968-2008. J Geophys Res Oceans. 2011;116:C03007.

    Google Scholar 

  • Barber D, Landry D, Babb D, Kirillov S, Aubry C, Schembri S, et al. Bay-Wide Survey Program Cruise Report – CCGS Amundsen (LEG-1). In: Hudson Bay System Study (BaySys) Phase 1 Report: Hudson Bay Field Program and Data Collection. Landry, DL & Candlish, LM. (Eds). 2019. p. 131–222.

  • Jacquemot L, Kalenitchenko D, Matthes LC, Vigneron A, Mundy CJ, Tremblay JE, et al. Protist communities along freshwater-marine transition zones in Hudson Bay (Canada). Elem Sci Anthr. 2021;9:00111.

    Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M. Determination of nutrients. In: Methods of Seawater Analysis: Third, Completely Revised and Extended Edition. 1999. p. 159–228.

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–22.

    PubMed 

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high- throughput community sequencing data. Nat Publ Group. 2010;7:335–6.

    Google Scholar 

  • Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:597–604.

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.

    Google Scholar 

  • McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package ‘vegan’. Community ecology package, version 2(9). 2013;1-295.

  • Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1–14.

    Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Volterra V. Fluctuations in the abundance of a species considered mathematically. Nature. 1926;118:558–60.

    Google Scholar 

  • Joli N, Monier A, Logares R, Lovejoy C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 2017;11:1372–85.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Barber DG, Hop H, Mundy CJ, Else B, Dmitrenko IA, Tremblay JE, et al. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog Oceanogr. 2015;139:122–50.

    Google Scholar 

  • Tremblay JÉ, Anderson LG, Matrai P, Coupel P, Bélanger S, Michel C, et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog Oceanogr. 2015;139:171–96.

    Google Scholar 

  • Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:1–7.

    Google Scholar 

  • Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5.

  • Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.

    PubMed 

    Google Scholar 

  • Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett. 2016;19:926–36.

    PubMed 

    Google Scholar 

  • Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.

    PubMed 

    Google Scholar 

  • Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;10:1–10.

    Google Scholar 

  • Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, et al. Environmental vulnerability of the global ocean epipelagic plankton community interactome. Sci Adv. 2021;7:eabg1921.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Clarke LJ, Bestley S, Bissett A, Deagle BE. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 2019;13:734–7.

    PubMed 

    Google Scholar 

  • Not F, del Campo J, Balagué V, de Vargas C, Massana R. New insights into the diversity of marine picoeukaryotes. PLoS One. 2009;4:e7143.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bass D, Stentiford GD, Littlewood DTJ, Hartikainen H. Diverse Applications of Environmental DNA Methods in Parasitology. Trends Parasitol. 2015;31:499–513.

    PubMed 

    Google Scholar 

  • Kellogg CTE, Mcclelland JW, Dunton KH, Crump BC. Strong seasonality in arctic estuarine microbial food webs. Front Microbiol. 2019;10:2628.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nitsche F, Weittere M, Scheckenbach F, Hausmann K, Wylezich C, Ardnt H. Deep sea records of choanoflagellates with a description of two new species. Acta Protozool. 2007;46:99–106.

    Google Scholar 

  • Thaler M, Lovejoy C. Biogeography of heterotrophic flagellate populations indicates the presence of generalist and specialist taxa in the Arctic Ocean. Appl Environ Microbiol. 2015;81:2137–48.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomsen HA, Østergaard JB, Hansen LE. Loricate choanoflagellates from West Greenland (August 1988) including the description of Spinoeca buckii gen. et sp. nov. Eur J Protistol. 1995;31:38–44.

    Google Scholar 

  • Thomsen HA, Østergaard JB. Acanthoecid choanoflagellates from the Atlantic Arctic Region − a baseline study. Heliyon. 2017;3:e00345.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Buck KR, Garrison DL, Cruz S. Distribution and abundance of choanoflagellates (Acanthoecidae) across the ice-edge zone in the Weddell Sea, Antarctica. Mar Biol. 1988;98:263–9.

    Google Scholar 

  • Escalera L, Mangoni O, Bolinesi F, Saggiomo M. Austral summer bloom of loricate choanoflagellates in the central Ross Sea polynya. J Eukaryot Microbiol. 2019;66:849–52.

    PubMed 

    Google Scholar 

  • Delmont TO, Hammar KM, Ducklow HW, Yager PL, Post AF. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front Microbiol. 2014;5:1–13.

    Google Scholar 

  • Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Alexander Richter R, Valas R, et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 2012;6:1186–99.

    PubMed 

    Google Scholar 

  • Abell GCJ, Bowman JP. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol. 2005;51:265–77.

    PubMed 

    Google Scholar 

  • Delmont TO, Murat Eren A, Vineis JH, Post AF. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front Microbiol. 2015;6:e1090.

    Google Scholar 

  • Stingl U, Desiderio RA, Cho JC, Vergin KL, Giovannoni SJ. The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl Environ Microbiol. 2007;73:2290–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Sousa AGG, Tomasino MP, Duarte P, Fernández-Méndez M, Assmy P, Ribeiro H, et al. Diversity and composition of pelagic prokaryotic and protist communities in a thin Arctic sea-ice regime. Microb Ecol. 2019;78:388–408.

    PubMed 

    Google Scholar 

  • Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the central Arctic Ocean. Front Microbiol. 2018;9:1035.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wemheuer B, Güllert S, Billerbeck S, Giebel HA, Voget S, Simon M, et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol Ecol. 2014;87:378–89.

    PubMed 

    Google Scholar 

  • Jain A, Krishnan KP. Differences in free-living and particle-associated bacterial communities and their spatial variation in Kongsfjorden, Arctic. J Basic Microbiol. 2017;57:827–38.

    PubMed 

    Google Scholar 

  • Granskog MA, Kuzyk ZZA, Azetsu-Scott K, Macdonald RW. Distributions of runoff, sea-ice melt and brine using δ18o and salinity data – a new view on freshwater cycling in Hudson Bay. J Mar Syst. 2011;88:362–74.

    Google Scholar 

  • Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutierrez-Rodriguez A, Stukel MR, Lopes dos Santos A, Biard T, Scharek R, Vaulot D, et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 2019;13:964–76.

    PubMed 

    Google Scholar 

  • Bråte J, Krabberød AK, Dolven JK, Ose RF, Kristensen T, Bjørklund KR, et al. Radiolaria associated with large diversity of marine alveolates. Protist. 2012;163:767–77.

    PubMed 

    Google Scholar 

  • Dolven JK, Lindqvist C, Albert VA, Bjørklund KR, Yuasa T, Takahashi O, et al. Molecular diversity of alveolates associated with neritic North Atlantic radiolarians. Protist. 2007;158:65–76.

    PubMed 

    Google Scholar 

  • Decelle J, Martin P, Paborstava K, Pond DW, Tarling G, Mahé F, et al. Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS One. 2013;8:e53598.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernandes GL, Shenoy BD, Damare SR. Diversity of bacterial community in the oxygen minimum zones of Arabian Sea and Bay of Bengal as deduced by illumina sequencing. Front Microbiol. 2020;10:e3153.

    Google Scholar 

  • Vigneron A, Cruaud P, Culley A, Couture RM, Lovejoy C, Vincent W. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem. Microbiome. 2020;9:e46.

    Google Scholar 

  • Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Publ Group. 2012;10:381–94.

    Google Scholar 

  • Bianchi D, Weber TS, Kiko R, Deutsch C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat Geosci. 2018;11:263–68.

    Google Scholar 

  • Michel C, Legendre L, Therriault JC, Demers S, Vandevelde T. Springtime coupling between ice algal and phytoplankton assemblages in southeastern Hudson Bay, Canadian Arctic. Polar Biol. 1993;13:441–9.

    Google Scholar 

  • Boetius A, Albrecht S, Bakker K, Bienhold C, Felden J, Fernández-méndez M, et al. Export of algal biomass from the metling Arctic sea ice. Science. 2013;339:1430–2.

    PubMed 

    Google Scholar 

  • Vigneron A, Lovejoy C, Cruaud P, Kalenitchenko D, Culley A, Vincent WF. Contrasting winter versus summer microbial communities and metabolic functions in a permafrost thaw lake. Front Microbiol. 2019;10:e1656.

    Google Scholar 

  • Tremblay JÉ, Lee J-H, Gosselin M, Belanger S. Nutrient dynamic and marine biological productivity in the greater Hudson Bay marine region. In: An integrated regional impact study (IRIS) Arcticnet University of Manitoba and ArcticNet. 2019. p. 225–44.

  • Wassmann P, Reigstad M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography. 2011;24:220–31.

    Google Scholar 


  • Source: Ecology - nature.com

    High-resolution bathymetries and shorelines for the Great Lakes of the White Nile basin

    Induced pluripotent stem cells of endangered avian species