in

Convergence in phosphorus constraints to photosynthesis in forests around the world

  • Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).

    ADS 
    Article 

    Google Scholar 

  • Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wang, W. L. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. USA 110, 13061–13066 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Clark, D. A. et al. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests. Biogeosciences 14, 4663–4690 (2017).

    ADS 
    Article 

    Google Scholar 

  • Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Reed, S. C. et al. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. N. Phytologist 208, 324–329 (2015).

    CAS 
    Article 

    Google Scholar 

  • Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea – how can it occur? Biogeochemistry 13, 87–115 (1991).

    Article 

    Google Scholar 

  • Kattge, J. et al. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).

    ADS 
    Article 

    Google Scholar 

  • Rogers, A. The use and misuse of Vc,max in Earth System Models. Photosynthesis Res. 119, 15–29 (2014).

    CAS 
    Article 

    Google Scholar 

  • Field, C. B. & Mooney, H. A. in On the economy of plant form and function. (ed T. J. Givnish) 25-55. (Cambridge University Press, 1986).

  • Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).

    ADS 
    Article 

    Google Scholar 

  • Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Raven, J. A. Rubisco: still the most abundant protein of Earth? N. Phytologist 198, 1–3 (2013).

    CAS 
    Article 

    Google Scholar 

  • Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19 (1989).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Thornton, P. E. et al. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 21, GB4018 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Reich, P. B. et al. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Achat, D. L. et al. Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry 131, 173–202 (2016).

    CAS 
    Article 

    Google Scholar 

  • Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vitousek, P. M. et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Carstensen, A. et al. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol. 177, 271–284 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ellsworth, D. S. et al. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant Cell Environ. 38, 1142–1156 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • von Caemmerer, S. Biochemical Models of Leaf Photosynthesis. (CSIRO Publishing, 2000).

  • Brooks, A. et al. Effects of phosphorus nutrition on the response of photosynthesis to CO2 and O2, activation of ribulose bisphosphate carboxylase and amounts of ribulose bisphosphate and 3-phosphoglycerate in spinach leaves. Photosynthesis Res. 15, 133–141 (1988).

    CAS 
    Article 

    Google Scholar 

  • Chen, J. L. et al. Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93, 63–69 (1993).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33, 959–980 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Farquhar, G. D. et al. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Soong, J. L. et al. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Sci. Rep. 10, 2302 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Norby, R. J. et al. Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. N. Phytologist 215, 1425–1437 (2017).

    CAS 
    Article 

    Google Scholar 

  • Crous, K. Y. et al. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study. N. Phytologist 215, 992–1008 (2017).

    CAS 
    Article 

    Google Scholar 

  • Domingues, T. F. et al. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajos National Forest, Para, Brazil). Earth Interactions 9, 17 (2005).

  • Augusto, L. et al. Soil parent material-A major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Change Biol. 23, 3808–3824 (2017).

    ADS 
    Article 

    Google Scholar 

  • Lambers, H. et al. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 347, 7–27 (2011).

    Article 
    CAS 

    Google Scholar 

  • Yan, L. et al. Responses of foliar phosphorus fractions to soil age are diverse along a 2 Myr dune chronosequence. N. Phytologist 223, 1621–1633 (2019).

    CAS 
    Article 

    Google Scholar 

  • Yang, X. & Post, W. M. Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 8, 2907–2916 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Duursma, R. A. Plantecophys – An R package for analysing and modelling leaf gas exchange data. Plos One 10, e0143346 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE. Geoscientific Model Dev. 10, 3745–3770 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Walker, A. P. et al. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (V-cmax) on global gross primary production. N. Phytologist 215, 1370–1386 (2017).

    CAS 
    Article 

    Google Scholar 

  • Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637–645 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    ADS 
    Article 

    Google Scholar 

  • Neter, J. et al. Applied Linear Statistical Models, 4th ed., (McGraw-Hill, 1996).

  • Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evolution 4, 202–209 (2020).

    Article 

    Google Scholar 

  • Turner, B. L. et al. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 490, 123–456 (2018).

    Google Scholar 

  • Thornton, P. E. et al. Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nat. Clim. Chang. 7, 496-+ (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wieder, W. R. et al. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Walker, A. P. et al. The relationship of leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol. Evolution 4, 3218–3235 (2014).

    Article 

    Google Scholar 

  • Lambers, H. et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. N. Phytologist 196, 1098–1108 (2012).

    CAS 
    Article 

    Google Scholar 

  • Jiang, M. K. et al. Towards a more physiological representation of vegetation phosphorus processes in land surface models. N. Phytologist 222, 1223–1229 (2019).

    Article 

    Google Scholar 

  • Leuning, R. Scaling to a common temperature improves the correlation between the photosynthesis parameters Jmax and Vcmax. J. Exp. Bot. 48, 345–347 (1997).

    CAS 
    Article 

    Google Scholar 

  • Bonardi, V. et al. Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437, 1179–1182 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Seiler, C. et al. Are terrestrial biosphere models fit for simulating the global land carbon sink? J. Adv. Model Earth Syst. 14, e2021MS002946 (2022).

    ADS 
    Article 

    Google Scholar 

  • Goll, D. S. et al. Low phosphorus availability decreases susceptibility of tropical primary productivity to droughts. Geophys. Res. Lett. 45, 8231–8240 (2018).

    ADS 
    Article 

    Google Scholar 

  • Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    ADS 
    Article 

    Google Scholar 

  • Wang, Y. P. et al. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yang, X. J. et al. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate. Geophys. Res. Lett. 43, 7205–7214 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ellsworth, D. S. et al. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob. Change Biol. 10, 2121–2138 (2004).

    ADS 
    Article 

    Google Scholar 

  • Bloomfield, K. J. et al. Contrasting photosynthetic characteristics of forest vs. savanna species (Far North Queensland, Australia). Biogeosciences 11, 7331–7347 (2014).

    ADS 
    Article 

    Google Scholar 

  • Cernusak, L. A. et al. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).

    ADS 
    Article 

    Google Scholar 

  • Bahar, N. H. A. et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. N. Phytologist 214, 1002–1018 (2017).

    CAS 
    Article 

    Google Scholar 

  • Rowland, L. et al. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration. Glob. Change Biol. 21, 4662–4672 (2015).

    ADS 
    Article 

    Google Scholar 

  • Domingues, T. F. et al. Seasonal patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecol. Diversity 7, 189–203 (2014).

    Article 

    Google Scholar 

  • Kenzo, T. et al. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiol. 26, 865–873 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • van de Weg, M. J. et al. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168, 23–34 (2012).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Kenzo, T. et al. Variations in leaf photosynthetic and morphological traits with tree height in various tree species in a Cambodian tropical dry evergreen forest. Jpn. Agriculture Res. Q. 46, 167–180 (2012).

    Article 

    Google Scholar 

  • Domingues, T. F. et al. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia 178, 659–672 (2015).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Verryckt, L. T. et al. Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment. Earth Syst. Sci. Data 14, 5–18 (2022).

    ADS 
    Article 

    Google Scholar 

  • Santiago, L. S. & Mulkey, S. S. A test of gas exchange measurements on excised canopy branches of ten tropical tree species. Photosynthetica 41, 343–347 (2003).

    CAS 
    Article 

    Google Scholar 

  • Medlyn, B. E. et al. Linking leaf and tree water use with an individual-tree model. Tree Physiol. 27, 1687–1699 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Townsend, A. R. et al. Controls over foliar N:P ratios in tropical rain forests. Ecology 88, 107–118 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reich, P. B. et al. Leaf structure (specific leaf area) modulates photosynthesis- nitrogen relations: evidence from within and across species and functional groups. Funct. Ecol. 12, 948–958 (1998).

    Article 

    Google Scholar 

  • Rogers, A. et al. Improving representation of photosynthesis in Earth System Models. N. Phytologist 204, 12–14 (2014).

    Article 

    Google Scholar 

  • Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. N. Phytologist 222, 768–784 (2019).

    CAS 
    Article 

    Google Scholar 

  • Warton, D. I. et al. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19, GB1015 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Koerselman, W. & Meuleman, A. F. M. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).

    Article 

    Google Scholar 

  • Tian, H. Q. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Designing zeolites, porous materials made to trap molecules

    These neurons have food on the brain