in

Cophylogeny and convergence shape holobiont evolution in sponge–microbe symbioses

  • Hyman, L. H. The Invertebrates: Protozoa Through Ctenophora Vol. 1 (McGraw-Hill, 1940).

  • Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giles, E. C. et al. Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol. Ecol. 83, 232–241 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Gloeckner, V. et al. The HMA–LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).

    PubMed 

    Google Scholar 

  • Moitinho-Silva, L. et al. Predicting the HMA–LMA status in marine sponges by machine learning. Front. Microbiol. 8, 752 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cárdenas, C. A. et al. High similarity in the microbiota of cold-water sponges of the genus Mycale from two different geographical areas. PeerJ 6, e4935 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Webster, N. S. & Taylor, M. W. Marine sponges and their microbial symbionts: love and other relationships. Environ. Microbiol. 14, 335–346 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Freeman, C. J. et al. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 14, 1571–1583 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, J. J. et al. Climate change alterations to ecosystem dominance: how might sponge-dominated reefs function? Ecology 99, 1920–1931 (2018).

    PubMed 

    Google Scholar 

  • Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Lesser, M. P. Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J. Exp. Mar. Biol. Ecol. 328, 277–288 (2006).

    Google Scholar 

  • de Goeij, J. M., Lesser, M. P. & Pawlik, J. R. in Climate Change, Ocean Acidification and Sponges (eds Carballo, J. L. & Bell, J. J.) 373–410 (Springer, 2017); https://doi.org/10.1007/978-3-319-59008-0_8

  • Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Slaby, B. M., Hackl, T., Horn, H., Bayer, K. & Hentschel, U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J. 11, 2465–2478 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moitinho-Silva, L. et al. Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ. Microbiol. 16, 3683–3698 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Weisz, J. B., Lindquist, N. & Martens, C. S. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155, 367–376 (2008).

    PubMed 

    Google Scholar 

  • Poppell, E. et al. Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges. Mar. Ecol. 35, 414–424 (2014).

    Google Scholar 

  • McFall-Ngai, M. J. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, A. E. Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016113 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225–e2000229 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Brien, P. A. et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 14, 2211–2222 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Houwenhuyse, S., Stoks, R., Mukherjee, S. & Decaestecker, E. Locally adapted gut microbiomes mediate host stress tolerance. ISME J. 15, 2401–2414 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moeller, A. H. et al. Experimental evidence for adaptation to species-specific gut microbiota in house mice. mSphere 4, e00387-19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis impacts adaptive traits in Nasonia wasps. mBio https://doi.org/10.1128/mBio.00887-19 (2019).

  • Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. R. Soc. B https://doi.org/10.1098/rspb.2019.2900 (2020).

  • Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. https://doi.org/10.1038/s41467-018-07275-x (2018).

  • Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7, e02099 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: comparative analyses of ecological interactions. Am. Nat. 183, 174–187 (2014).

    PubMed 

    Google Scholar 

  • Hill, M. S. et al. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping genes. PLoS ONE 8, e50437 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Redmond, N. E. et al. Phylogeny and systematics of Demospongiae in light of new small-subunit ribosomal DNA (18S) sequences. Int. Comp. Biol. 53, 388–415 (2013).

    CAS 

    Google Scholar 

  • Worheide, G. et al. in Advances in Marine Biology: Advances in Sponge Science Vol. 61 (eds Becerro, M. A. et al.) 1–78 (Elsevier, 2012).

  • Schuster, A. et al. Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth–death clock model. BMC Evol. Biol. 18, 114 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stanley, G. D. & Fautin, D. G. Paleontology and evolution. Orig. Mod. Corals Sci. 291, 1913–1914 (2001).

    CAS 

    Google Scholar 

  • Brinkmann, C. M., Marker, A. & Kurtböke, D. I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9, 40 (2017).

    Google Scholar 

  • Rust, M. et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc. Natl Acad. Sci. USA 117, 9508–9518 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faulkner, D. J., Harper, M. K., Haygood, M. G., Salomon, C. E. & Schmidt, E. W. in Drugs from the Sea (ed. Fusetani, N.) 107–119 (Karger, 2000).

  • Loh, T.-L. & Pawlik, J. R. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc. Natl Acad. Sci. USA 111, 4151–4156 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pagel, M. Detecting correlated evolution on phylogenies—a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).

    Google Scholar 

  • Easson, C. G. & Thacker, R. W. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front. Microbiol. 5, 532 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schöttner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, e55505 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, D. R. & Foulds, L. R. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).

    Google Scholar 

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Apprill, A. The role of symbioses in the adaptation and stress responses of marine organisms. Annu. Rev. Mar. Sci. 12, 291–314 (2020).

    Google Scholar 

  • Lesser, M. P., Slattery, M. & Mobley, C. Biodiversity and functional ecology of mesophotic coral reefs. Annu. Rev. Ecol. Evol. Syst. 49, 49–71 (2018).

    Google Scholar 

  • Lipps, J. H. & Stanley, G. D. in Coral Reefs at the Crossroads (eds Hubbard, D. K. et al.) 175–196 (Springer, 2016); https://doi.org/10.1007/978-94-017-7567-0_8

  • Macartney, K. J., Slattery, M. & Lesser, M. P. Trophic ecology of Caribbean sponges in the mesophotic zone. Limnol. Oceanogr. 66, 1113–1124 (2021).

    CAS 

    Google Scholar 

  • McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588, 1–14 (2018).

    CAS 

    Google Scholar 

  • Olinger, L. K., Strangman, W. K., McMurray, S. E. & Pawlik, J. R. Sponges with microbial symbionts transform dissolved organic matter and take up organohalides. Front. Mar. Sci. 8, 665789 (2021).

    Google Scholar 

  • Haas, A. F. et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE 6, e27973 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sánchez-Baracaldo, P. Origin of marine planktonic cyanobacteria. Sci. Rep. 5, 17418 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez-Bracaldo, P., Ridgwell, A. & Raven, J. A. A neoproterozoic transition in the marine nitrogen cycle. Curr. Biol. 24, 652–657 (2014).

    Google Scholar 

  • Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, D. et al. Coupling of ocean redox and animal evolution during the Ediacaran–Cambrian transition. Nat. Commun. 9, 2575 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92, 878–901 (2017).

    PubMed 

    Google Scholar 

  • Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).

    Google Scholar 

  • Després, L., David, J.-P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).

    PubMed 

    Google Scholar 

  • Richardson, K. L., Gold-Bouchot, G. & Schlenk, D. The characterization of cytosolic glutathione transferase from four species of sea turtles: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Comp. Biochem. Physiol. C 150, 279–284 (2009).

    Google Scholar 

  • Bayer, K., Jahn, M. T., Slaby, B. M., Moitinho-Silva, L. & Hentschel, U. Marine sponges as Chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems 3, e00150-18 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sachs, J. L., Skophammer, R. G., Bansal, N. & Stajich, J. E. Evolutionary origins and diversification of proteobacterial mutualists. Proc. R Soc. B https://doi.org/10.1098/rspb.2013.2146 (2014).

  • Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Natl Acad. Sci. USA 108, 10800–10807 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seutin, G., White, B. N. & Boag, P. T. Preservation of avian blood and tissue samples for DNA analyses. Can. J. Zool. https://doi.org/10.1139/z91-013 (2011).

  • Sunagawa, S. et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10, 258 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. Comput. Sci. Biol. 99, 45–56 (1999).

    Google Scholar 

  • Li, W. & Godzik, A. CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS 

    Google Scholar 

  • Francis, W. R. et al. The genome of the contractile demosponge Tethya wilhelma and the evolution of metazoan neural signalling pathways. Preprint at bioRxiv https://doi.org/10.1101/120998 (2017).

  • Altschul, S. F. A protein alignment scoring system sensitive at all evolutionary distances. J. Mol. Evol. 36, 290–300 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simion, P. et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. https://doi.org/10.1016/j.cub.2017.02.031 (2017).

  • Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS 

    Google Scholar 

  • Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    CAS 

    Google Scholar 

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 

    Google Scholar 

  • Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Google Scholar 

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5 (2019).

  • Lahti, L. et al. Tools for Microbiome Analysis in R. Microbiome package version 1.17.2 https://github.com/microbiome/microbiome (2017).

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS 

    Google Scholar 

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westbrook, A. et al. PALADIN: protein alignment for functional profiling whole metagenome shotgun data. Bioinformatics 33, 1473–1478 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waddell, B. & Pawlik, J. R. Defenses of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Mar. Ecol. Prog. Ser. 195, 125–132 (2000).

    Google Scholar 

  • Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. FEMS Microbiol. Ecol. 20, 289–290 (2004).

    CAS 

    Google Scholar 

  • Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  • Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    More rain, less often

    MIT Energy Conference focuses on climate’s toughest challenges