Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377(2017).
Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. R. Soc. B Biol. Sci. 285, 20181 (2018).
Schoepf, V. et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One 8, e75049 (2013).
Google Scholar
Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).
Heron, S. F., Maynard, J. A., Van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world’s coral reefs 1985-2012. Sci. Rep. 6, 38402, 1–14 (2016).
Marshall, A. T. & Clode, P. Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs. 23, 218–224 (2004).
Jokiel, P. L. & Coles, S. L. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 208, 201–208 (1977).
Rodolfo-Metalpa, R., Huot, Y. & Ferrier-Pagès, C. Photosynthetic response of the Mediterranean zooxanthellate coral Cladocora caespitosa to the natural range of light and temperature. J. Exp. Biol. 211, 1579–1586 (2008).
Google Scholar
Cohen, A. L. & McConnaughey, T. A. Geochemical perspectives on coral mineralization. Rev. Mineral. Geochemistry 54, 151–187 (2003).
Google Scholar
McCulloch, M. T., Falter, J. L., Trotter, J. & Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat. Clim. Chang. 2, 1–5 (2012).
Venn, A. A., Tambutté, É., Holcomb, M., Allemand, D. & Tambutté, S. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS One 6, e20013 (2011).
Google Scholar
Cai, W.-J. et al. Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat. Commun. 7, 11144 (2016).
Google Scholar
Al-Horani, F. A., Al-Moghrabi, S. M. & de Beer, D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 142, 419–426 (2003).
Google Scholar
Holcomb, M. et al. Coral calcifying fluid pH dictates response to ocean acidification. Sci. Rep. 4, 5207 (2014).
Google Scholar
Holcomb, M., DeCarlo, T. M., Gaetani, G. A. & McCulloch, M. T. Factors affecting B/Ca ratios in synthetic aragonite. Chem. Geol. 437, 67–76 (2016).
Google Scholar
McCulloch, M. T., D’Olivo, J. P., Falter, J., Holcomb, M. & Trotter, J. A. Coral calcification in a changing World: the interactive dynamics of pH and DIC up-regulation. Nat. Commun. 8, 15686 (2017).
Tambutté, S. et al. Calcein labelling and electrophysiology: insights on coral tissue permeability and calcification. Proc. R. Soc. B 279, 19–27 (2012).
Trotter, J. et al. Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: Validation of the boron seawater pH proxy. Earth Planet. Sci. Lett. 303, 163–173 (2011).
Google Scholar
Schoepf, V., Jury, C. P., Toonen, R. & McCulloch, M. Coral calcification mechanisms facilitate adaptive response to ocean acidification. Proc. R. Soc. B 284, 2117 (2017).
Comeau, S., Cornwall, C. E. & McCulloch, M. T. Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification. Sci. Rep. 7, 7573 (2017).
Google Scholar
Schoepf, V., D’Olivo, J. P., Rigal, C., Jung, E. M. U. & Mcculloch, M. T. Heat stress differentially impacts key calcification mechanisms in reef-building corals. Coral Reefs. https://doi.org/10.1007/s00338-020-02038-x (2021).
Google Scholar
Schoepf, V. et al. Short-term coral bleaching is not recorded by skeletal boron isotopes. PLoS One 9, e112011 (2014).
D’Olivo, J. P. & McCulloch, M. T. Response of coral calcification and calcifying fluid composition to thermally induced bleaching stress. Sci. Rep. 7, 2207 (2017).
Dishon, G. et al. A novel paleo-bleaching proxy using boron isotopes and high-resolution laser ablation to reconstruct coral bleaching events. Biogeosciences 12, 5677–5687 (2015).
Guillermic, M. et al. Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry. Sci. Adv. 7, 20172117(2021).
Ross, C. L., Falter, J. L. & McCulloch, M. T. Active modulation of the calcifying fluid carbonate chemistry (δ11B, B/Ca) and seasonally invariant coral calcification at sub-tropical limits. Sci. Rep. 7, 1–11 (2017). 13830.
D’Olivo, J. P., Ellwood, G., Decarlo, T. M. & Mcculloch, M. T. Deconvolving the long-term impacts of ocean acidification and warming on coral biomineralisation. Earth Planet. Sci. Lett. 526, 115785 (2019).
Ross, C. L., DeCarlo, T. M. & McCulloch, M. T. Environmental and physiochemical controls on coral calcification along a latitudinal temperature gradient in Western Australia. Glob. Chang. Biol. 25, 431–447 (2019).
Guo, W. Seawater temperature and buffering capacity modulate coral calcifying pH. Sci. Rep. 9, 1–13 (2019).
Reynaud, S., Ferrier-Pagès, C., Boisson, F., Allemand, D. & Fairbanks, R. G. Effect of light and temperature on calcification and strontium uptake in the scleractinian coral Acropora verweyi. Mar. Ecol. Prog. Ser. 279, 105–112 (2004).
Google Scholar
Dissard, D. et al. Light and temperature effects on δ11B and B/Ca ratios of the zooxanthellate coral Acropora sp.: results from culturing experiments. Biogeosciences 9, 4589–4605 (2012).
Google Scholar
Hönisch, B. et al. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochim. Cosmochim. Acta 68, 3675–3685 (2004).
Comeau, S. et al. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Reports 9, 1–12 (2019). 2019 91.
DeCarlo, T. M., Ross, C. L. & McCulloch, M. T. Diurnal cycles of coral calcifying fluid aragonite saturation state. Mar. Biol. 166, 1–6 (2019).
Google Scholar
Ross, C. L., Schoepf, V., DeCarlo, T. M. & McCulloch, M. T. Mechanisms and seasonal drivers of calcification in the temperate coral Turbinaria reniformis at its latitudinal limits. Proc. R. Soc. B 285, 20180 (2018).
Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta 74, 4988–5001 (2010).
Google Scholar
Coles, S. L. & Jokiel, P. L. Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar. Biol. 43, 209–216 (1977).
Google Scholar
Gattuso, J.-P., Allemand, D. & Frankignoulle, M. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am. Zool. 39, 160–183 (1999).
Google Scholar
Kajiwara, K., Nagai, A., Ueno, S. & Yokochi, H. Examination of the effect of temperature, light intensity and zooxanthellae concentration on calcification and photosynthesis of scleractinian coral Acropora pulchra. J. Sch. Mar. Sci. Technol. Tokai Univ. 40, 95–103 (1995).
Reynaud, S. et al. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang. Biol. 9, 1660–1668 (2003).
Furla, P., Galgani, I., Durand, I. & Allemand, D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445–3457 (2000).
Google Scholar
Zoccola, D. et al. Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci. Rep. 5, 9983 (2015).
Google Scholar
Allison, N. et al. Corals concentrate dissolved inorganic carbon to facilitate calcification. Nat. Commun. 5, 5741 (2014).
Google Scholar
Vajed Samiei, J. et al. Variation in calcification rate of Acropora downingi relative to seasonal changes in environmental conditions in the northeastern Persian Gulf. Coral Reefs. https://doi.org/10.1007/s00338-016-1464-6 (2016).
Google Scholar
Kuffner, I. B., Hickey, T. D. & Morrison, J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs. 32, 987–997 (2013).
Courtney, T. A. et al. Environmental controls on modern scleractinian coral and reef-scale calcification. Sci. Adv. 3, e170135 (2017).
Burton, E. A. & Walter, L. M. Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control? Geology 15, 111 (1987).
Google Scholar
Lough, J. M. & Barnes, D. Environmental controls on growth of the massive coral Porites. J. Exp. Mar. Bio. Ecol. 245, 225–243 (2000).
Google Scholar
Fitt, W. K., Brown, B., Warner, M. E. & Dunne, R. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs. 20, 51–65 (2001).
Fisher, R., Bessell-Browne, P. & Jones, R. Synergistic and antagonistic impacts of suspended sediments and thermal stress on corals. Nat. Commun. 10, 1–9 (2019).
Google Scholar
Teixeira, C. D. et al. Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs. 38, 801–813 (2019).
Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719 (2017).
Ulstrup, K. E., Kühl, M., van Oppen, M. J. H., Cooper, T. F. & Ralph, P. J. Variation in photosynthesis and respiration in geographically distinct populations of two reef-building coral species. Aquat. Biol. 12, 241–248 (2011).
Lough, J. M. & Cantin, N. E. Perspectives on massive coral growth rates in a changing ocean. Biol. Bull. 226, 187–202 (2014).
Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).
Veron, J. E. N. Corals of the world. Townsville, Australia (Australian Institute of Marine Science, 2000).
Foster, T., Short, J., Falter, J. L., Ross, C. & McCulloch, M. T. Reduced calcification in Western Australian corals during anomalously high summer water temperatures. J. Exp. Mar. Bio. Ecol. 461, 133–143 (2014).
Google Scholar
Ross, C. L., Falter, J. L., Schoepf, V. & McCulloch, M. T. Perennial growth of hermatypic corals at Rottnest Island, Western Australia (32°S). PeerJ 3, e781 (2015).
McCulloch, M. T., Holcomb, M., Rankenburg, K. & Trotter, J. A. Rapid, high-precision measurements of boron isotopic compositions in marine carbonates. Rapid Commun. Mass Spectrom. RCM 28, 2704–2712 (2014).
Google Scholar
Okai, T., Suzuki, A., Kawahata, H., Terashima, S. & Imai, N. Preparation of a new Geological Survey of Japan geochemical reference material: Coral JCp-1. Geostand. Newsl 26, 95–99 (2002).
Google Scholar
Dickson, A. G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. Part A. Oceanogr. Res. Pap. 37, 755–766 (1990).
Google Scholar
McCulloch, M. T. et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).
Google Scholar
Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2015).
Source: Ecology - nature.com