Alieva, N. O. et al. Diversity and evolution of coral fluorescent proteins. PLoS ONE 3, e2680 (2008).
Google Scholar
Dove, S., Hoegh-Guldberg, O. & Ranganathan, S. Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19, 197–204 (2001).
Google Scholar
Shimomura, O., Johnson, F. H. & Saiga, Y. Extraction, purification, and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Physiol. 59, 223–239 (1962).
Google Scholar
Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).
Google Scholar
Kawaguti, S. Effect of the green fluorescent pigment on the productivity of the reef corals. Micronesica 5, 121 (1969).
Gittins, J. R., D’Angelo, C., Oswald, F., Edwards, R. J. & Wiedenmann, J. Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Mol. Ecol. 24, 453–465 (2015).
Google Scholar
Roth, M. S., Latz, M. I., Goericke, R. & Deheyn, D. D. Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. J. Exp. Biol. 213, 3644–3655 (2010).
Google Scholar
Quick, C., D’Angelo, C. & Wiedenmann, J. Trade-offs associated with photoprotective green fluorescent protein expression as potential drivers of balancing selection for color polymorphism in reef corals. Front. Mar. Sci. 5, 11 (2018).
Google Scholar
Schlichter, D., Fricke, H. W. & Weber, W. Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Mar. Biol. 91, 403–407 (1986).
Google Scholar
Bollati, E., Plimmer, D., D’Angelo, C. & Wiedenmann, J. FRET-mediated long-range wavelength transformation by photoconvertible fluorescent proteins as an efficient mechanism to generate orange-red light in symbiotic deep water corals. Int. J. Mol. Sci. 18, 1174 (2017).
Google Scholar
Palmer, C. V., Modi, C. K. & Mydlarz, L. D. Coral fluorescent proteins as antioxidants. PLoS ONE 4, e7298 (2009).
Google Scholar
Bou-Abdallah, F., Chasteen, N. D. & Lesser, M. P. Quenching of superoxide radicals by green fluorescent protein. Biochim. Biophys. Biochim. Biophys. Acta Gen. Subj. 1760, 1690–1695 (2006).
Google Scholar
Matz, M. V., Marshall, N. J. & Vorobyev, M. Are corals colorful? Photochem. Photobiol. 82, 345–350 (2006).
Google Scholar
Aihara, Y. et al. Green fluorescence from cnidarian hosts attracts symbiotic algae. Proc. Natl Acad. Sci. USA 116, 2118–2123 (2019).
Google Scholar
Yamashita, H., Koike, K., Shinzato, C., Jimbo, M. & Suzuki, G. Can Acropora tenuis larvae attract native Symbiodiniaceae cells by green fluorescence at the initial establishment of symbiosis? PLoS ONE 16, e0252514 (2021).
Google Scholar
D’Angelo, C. et al. Blue light regulation of host pigment in reef-building corals. Mar. Ecol. Prog. Ser. 364, 97–106 (2008).
Google Scholar
Ben-Zvi, O., Eyal, G. & Loya, Y. Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia 759, 15–26 (2014).
Google Scholar
Muscatine, L., Porter, J. & Kaplan, I. Resource partitioning by reef corals as determined from stable isotope composition. Mar. Biol. 100, 185–193 (1989).
Google Scholar
Smith, E. G., D’Angelo, C., Sharon, Y., Tchernov, D. & Wiedenmann, J. Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 284, 20170320 (2017).
Schlichter, D., Meier, U. & Fricke, H. Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores. Oecologia 99, 124–131 (1994).
Google Scholar
Gilmore, A. M. et al. Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals. Photochem. Photobiol. 77, 515–523 (2003).
Google Scholar
Mazel, C. H. et al. Green-fluorescent proteins in Caribbean corals. Limnol. Oceanogr. 48, 402–411 (2003).
Google Scholar
Dubinsky, Z. & Falkowski, P. Light as a Source of Information and Energy in Zooxanthellate Corals. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 107–118 (Springer Science & Business Media, 2011).
Kahng, S. E. et al. Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of Mesophotic Coral Ecosystemsin. In Mesophotic Coral Ecosystems. Ch. 42 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 801–828 (Springer International publishing, 2019).
Loya, Y., Poglise, K. & Bridge, T. C. L. Mesophotic Coral Ecosystems (Springer International Publishing, 2019).
Eyal, G. et al. Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE 10, e0128697 (2015).
Google Scholar
Roth, M. S. et al. Fluorescent proteins in dominant mesophotic reef-building corals. Mar. Ecol. Prog. Ser. 521, 63–79 (2015).
Google Scholar
Ben-Zvi, O., Wangpraseurt, D., Bronstein, O., Eyal, G. & Loya, Y. Photosynthesis and bio-optical properties of fluorescent mesophotic corals. Front. Mar. Sci. 8, 651601 (2021).
Google Scholar
Ben-Zvi, O., Eyal, G. & Loya, Y. Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Sci. Rep. 9, 5245 (2019).
Google Scholar
Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. Camb. Philos. Soc. 84, 1–17 (2009).
Google Scholar
Goreau, T. F., Goreau, N. I. & Yonge, C. M. Reef corals: autotrophs or heterotrophs? Biol. Bull. 141, 247–260 (1971).
Google Scholar
Price, J. T., McLachlan, R. H., Jury, C. P., Toonen, R. J. & Grottoli, A. G. Isotopic approaches to estimating the contribution of heterotrophic sources to Hawaiian corals. Limnol. Oceanogr. 66, 2393–2407 (2021).
Google Scholar
Anthony, K. R. N. Coral suspension feeding on fine particulate matter. J. Exp. Mar. Biol. Ecol. 232, 85–106 (1999).
Google Scholar
Ferrier-Pagès, C., Rottier, C., Beraud, E. & Levy, O. Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: effect on the rates of photosynthesis. J. Exp. Mar. Biol. Ecol. 390, 118–124 (2010).
Google Scholar
Palardy, E. J., Grottoli, G. A. & Matthews, A. K. Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar. Ecol. Prog. Ser. 300, 79–89 (2005).
Google Scholar
Mies, M. et al. In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers. Coral Reefs 37, 677–689 (2018).
Google Scholar
Jerlov, N. G. Optical Oceanography Vol. 5 (Elsevier, 1968).
Crandall, J. B., Teece, M. A., Estes, B. A., Manfrino, C. & Ciesla, J. H. Nutrient acquisition strategies in mesophotic hard corals using compound specific stable isotope analysis of sterols. J. Exp. Mar. Biol. Ecol. 474, 133–141 (2016).
Google Scholar
Martinez, S. et al. Energy sources of the depth-generalist mixotrophic coral Stylophora pistillata. Front. Mar. Sci. 7, 566663 (2020).
Google Scholar
Williams, G. J. et al. Biophysical drivers of coral trophic depth zonation. Mar. Biol. 165, 60 (2018).
Google Scholar
Lesser, M. P. et al. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91, 990–1003 (2010).
Google Scholar
Mass, T. et al. Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar. Ecol. Prog. Ser. 334, 93–102 (2007).
Google Scholar
Sturaro, N., Hsieh, Y. E., Chen, Q., Wang, P. L. & Denis, V. Trophic plasticity of mixotrophic corals under contrasting environments. Funct. Ecol. 35, 2841–2855 (2021).
Google Scholar
Lewis, J. B. & Price, W. S. Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool. 176, 527–544 (1975).
Google Scholar
Levy, O., Mizrahi, L., Chadwick-Furman, N. E. & Achituv, Y. Factors controlling the expansion behavior of Favia favus (Cnidaria: Scleractinia): Effects of light, flow, and planktonic prey. Biol. Bull. 200, 118–126 (2001).
Google Scholar
Levy, O., Dubinsky, Z. & Achituv, Y. Photobehavior of stony corals: responses to light spectra and intensity. J. Exp. Biol. 206, 4041–4049 (2003).
Google Scholar
Turak, E. & DeVantier, L. Reef-Building Corals of the Upper Mesophotic Zone of the Central Indo-West Pacificin. In Mesophotic Coral Ecosystems. Ch. 34 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 621–651 (Springer International Publishing, 2019).
Haddock, S. H. D. & Dunn, C. W. Fluorescent proteins function as a prey attractant: experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4, 1094–1104 (2015).
Google Scholar
Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).
Google Scholar
Cronin, T. W. Invertebrate Vision in the Water. In Invertebrate Vision (eds Warran, E. & Nilsson, D.-E.) 6, 211–249 (Cambridge University Press, 2006).
Bradley, D. J. & Forward, R. B. Jr. Phototaxis of adult brine shrimp Artemia salina. Can. J. Zool. 62, 2357–2359 (1984).
Google Scholar
Audzijonytė, A., Pahlberg, J., Väinölä, R. & Lindström, M. Spectral sensitivity differences in two Mysis sibling species (Crustacea, Mysida): adaptation or phylogenetic constraints? J. Exp. Mar. Biol. Ecol. 325, 228–239 (2005).
Google Scholar
Beeton, A. M. Photoreception in the opossum shrimp, Mysis relicta Loven. Biol. Bull. 116, 204–216 (1959).
Google Scholar
Lindström, M. Eye function of Mysidacea (Crustacea) in the northern Baltic Sea. J. Exp. Mar. Biol. Ecol. 246, 85–101 (2000).
Google Scholar
Marshall, N. J. & Vorobyev, M. The Design of Color Signals and Color Vision in Fishes. In Sensory Processing in Aquatic Environments. Ch. 10 (eds Collin, S. P. & Marshall, N. J.) 10, 194–222 (Springer, 2003).
Denton, E. J. & Warren, F. J. The photosensitive pigments in the retinae of deep-sea fish. J. Mar. Biol. Assoc. UK 36, 651–662 (1957).
Google Scholar
Kelber, A. Invertebrate Colour Vision. In Invertebrate Vision (eds Warran, E. & Nilsson, D.-E.) 250–290 (Cambridge University Press, 2006).
Kim, H. J., Araki, T., Suematsu, Y. & Satuito, C. G. Ontogenic phototactic behaviors of larval stages in intertidal barnacles. Hydrobiologia 849, 747–761 (2021).
Cohen, J. H. & Forward, R. B. Jr. Spectral sensitivity of vertically migrating marine copepods. Biol. Bull. 203, 307–314 (2002).
Google Scholar
Su, Z., Huang, L., Yan, Y. & Li, H. The effect of different substrates on pearl oyster Pinctada martensii (Dunker) larvae settlement. Aquaculture 271, 377–383 (2007).
Google Scholar
Marangoni, R., Puntoni, S., Favati, L. & Colombetti, G. Phototaxis in Fabrea salina I. Action spectrum determination. J. Photochem. Photobiol. B: Biol. 23, 149–154 (1994).
Google Scholar
Hollingsworth, L. L., Kinzie, R. A., Lewis, T. D., Krupp, D. A. & Leong, J. A. C. Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs 24, 523–523 (2005).
Google Scholar
Smith, F. E. & Taylor, E. R. B. Color responses in the Cladocera and their ecological significance. Am. Nat. 87, 49–55 (1953).
Google Scholar
Feller, K. D. & Cronin, T. W. Spectral absorption of visual pigments in stomatopod larval photoreceptors. J. Comp. Physiol. A 202, 215–223 (2016).
Google Scholar
Pietsch, T. W. Bioluminescence and Luring. In Oceanic Anglerfishes: Extraordinary Diversity in the Deep Sea (ed. Pietsch, T. W.) 6, 229–252 (Berkeley: University of California Press, 2009).
Johnsen, S., Balser, E. J., Fisher, E. C. & Widder, E. A. Bioluminescence in the deep-sea cirrate octopod Stauroteuthis syrtensis Verrill (Mollusca: Cephalopoda). Biol. Bull. 197, 26–39 (1999).
Google Scholar
Robison, B. H., Reisenbichler, K. R., Hunt, J. C. & Haddock, S. H. Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis. Biol. Bull. 205, 102–109 (2003).
Google Scholar
Haddock, S. H. D., Dunn, C. W., Pugh, P. R. & Schnitzler, C. E. Bioluminescent and red-fluorescent lures in a deep-sea siphonophore. Science 309, 263 (2005).
Google Scholar
Hastings, J. & Nealson, K. H. Bacterial bioluminescence. Annu. Rev. Microbiol. 31, 549–595 (1977).
Google Scholar
Zarubin, M., Belkin, S., Ionescu, M. & Genin, A. Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc. Natl Acad. Sci. USA 109, 853–857 (2012).
Google Scholar
Nakaema, S. & Hidaka, M. Fluorescent protein content and stress tolerance of two color morphs of the coral Galaxea fascicularis. Galaxea 17, 1–11 (2015).
Google Scholar
Vermeij, M. J. A., Delvoye, L., Nieuwland, G. & Bak, R. P. M. Patterns in fluorescence over a Caribbean reef slope: the coral genus. Madracis. Photosynthetica 40, 423–429 (2002).
Google Scholar
Kahng, S. & Salih, A. Localization of fluorescent pigments in a nonbioluminescent, azooxanthellate octocoral suggests a photoprotective function. Coral Reefs 24, 435–435 (2005).
Google Scholar
Glynn, P. W. Ecology of a Caribbean coral reef. The Porites reef-flat biotope: Part II. Plankton community with evidence for depletion. Mar. Biol. 22, 1–21 (1973).
Google Scholar
Holzman, R., Reidenbach, M. A., Monismith, S. G., Koseff, J. R. & Genin, A. Near-bottom depletion of zooplankton over a coral reef II: relationships with zooplankton swimming ability. Coral Reefs 24, 87–94 (2005).
Google Scholar
Mazel, C. H. Spectral measurements of fluorescence emission in Caribbean cnidarians. Mar. Ecol. Prog. Ser. 120, 185–191 (1995).
Google Scholar
R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 1 1–48 (2015).
Kleiman, E. EMAtools: data management tools for real-time monitoring/ecological momentary assessment data. R package version 0.1.4 (2021).
Source: Ecology - nature.com