in

Counteracting forces of introgressive hybridization and interspecific competition shape the morphological traits of cryptic Iberian Eptesicus bats

  • Ottenburghs, J. et al. A history of hybrids? Genomic patterns of introgression in the True Geese. BMC Evol. Biol. 17, 14 (2017).

    Article 

    Google Scholar 

  • Baiz, M. D., Tucker, P. K. & Cortés-Ortiz, L. Multiple forms of selection shape reproductive isolation in a primate hybrid zone. Mol. Ecol. 28, 1056–1069 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Slager, D. L. et al. Cryptic and extensive hybridization between ancient lineages of American crows. Mol. Ecol. 29, 956–969 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grant, P. R. & Grant, B. R. Introgressive hybridization and natural selection in Darwin’s finches. Biol. J. Linnean Soc. 117, 812–822 (2016).

    Article 

    Google Scholar 

  • Pauquet, G., Salzburger, W. & Egger, B. The puzzling phylogeography of the haplochromine cichlid fish Astatotilapia burtoni. Ecol. Evol. 8, 5637–5648 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).

    Article 

    Google Scholar 

  • Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21, 1296–1301 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Anderson, R. P., Peterson, A. T. & Gómez-Laverde, M. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98, 3–16 (2002).

    Article 

    Google Scholar 

  • Gramlich, S., Wagner, N. D. & Horandl, E. RAD-seq reveals genetic structure of the F-2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression. BMC Plant Biol. 18, 12 (2018).

    Article 

    Google Scholar 

  • Mavárez, J. et al. Speciation by hybridization in Heliconius butterflies. Nature 441, 868–871 (2006).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Cahill, J. A. et al. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24, 1205–1217 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Djogbénou, L. et al. Evidence of introgression of the ace-1(R) mutation and of the ace-1 duplication in West African Anopheles gambiae s. s. PLoS ONE 3, e2172 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Enciso-Romero, J. et al. Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies. Mol. Ecol. 26, 5160–5172 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).

    ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Latch, E. K., Harveson, L. A., King, J. S., Hobson, M. D. & Rhodes, J. R. Assessing hybridization in wildlife populations using molecular markers: a case study in wild turkeys. J. Wildl. Manag. 70, 485–492 (2006).

    Article 

    Google Scholar 

  • Oliveira, R., Godinho, R., Randi, E. & Alves, P. C. Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula?. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 363, 2953–2961 (2008).

    Article 

    Google Scholar 

  • Nichols, P. et al. Secondary contact seeds phenotypic novelty in cichlid fishes. Proc. R. Soc. B Biol. Sci. 282, 8 (2015).

    Google Scholar 

  • Yang, W. Z. et al. Genomic evidence for asymmetric introgression by sexual selection in the common wall lizard. Mol. Ecol. 27, 4213–4224 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boratyński, Z. et al. Introgression of mitochondrial DNA among Myodes voles: consequences for energetics?. BMC Evol. Biol. 11, 355 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Mondal, M. et al. Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation. Nat. Genet. 48, 1066–1070 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Melo-Ferreira, J., Seixas, F. A., Cheng, E., Mills, L. S. & Alves, P. C. The hidden history of the snowshoe hare, Lepus americanus: extensive mitochondrial DNA introgression inferred from multilocus genetic variation. Mol. Ecol. 23, 4617–4630 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mims, M. C., Hulsey, C. D., Fitzpatrick, B. M. & Streelman, J. T. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Mol. Ecol. 19, 940–951 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Salazar, C. et al. Genetic evidence for hybrid trait speciation in heliconius butterflies. PLoS Genet. 6, e1000930 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Naisbit, R. E., Jiggins, C. D. & Mallet, J. Mimicry: developmental genes that contribute to speciation. Evol. Dev. 5, 269–280 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, W., Dasmahapatra, K. K., Mallet, J., Moreira, G. R. P. & Kronforst, M. R. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 17, 15 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zhang, W., Kunte, K. & Kronforst, M. R. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using De Novo transcriptome assemblies. Genome Biol. Evol. 5, 1233–1245 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science (New York, NY). 360, 1355–1358 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Melville, J. Competition and character displacement in two species of scincid lizards. Ecol. Lett. 5, 386–393 (2002).

    Article 

    Google Scholar 

  • Pfennig, D. W. & Pfennig, K. S. Character displacement and the origins of diversity. Am. Nat. 176, S26–S44 (2010).

    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 

  • Kooyers, N. J., James, B. & Blackman, B. K. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient. Evol. Int. J. Org. Evol. 71, 1205–1221 (2017).

    CAS 
    Article 

    Google Scholar 

  • Adams, D. C. & Rohlf, F. J. Ecological character displacement in Plethodon: Biomechanical differences found from a geometric morphometric study. Proc. Natl. Acad. Sci. 97, 4106–4111 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s finches. Science (New York, NY) 313, 224–226 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pfennig, D. W. & Murphy, P. J. Character displacement in polyphenic tadpoles. Evol. Int. J. Org. Evol. 54, 1738–1749 (2000).

    CAS 
    Article 

    Google Scholar 

  • Jones, G. Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species. Adv. Study Behav. 26, 317–354 (1997).

    Article 

    Google Scholar 

  • Marsteller, S., Adams, D. C., Collyer, M. L. & Condon, M. Six cryptic species on a single species of host plant: morphometric evidence for possible reproductive character displacement. Ecol. Entomol. 34, 66–73 (2009).

    Article 

    Google Scholar 

  • Tene Fossog, B. et al. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evol. Appl. 8, 326–345 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ibáñez, C., García-Mudarra, J. L., Ruedi, M., Stadelmann, B. & Juste, J. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterol. 8, 277–297 (2006).

    Article 

    Google Scholar 

  • Juste, J. et al. Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands. Mol. Phylogenet. Evol. 31, 1114–1126 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schreber J. Die Säugthiere in Abbildungen nach der Natur, mit Beschreibungen. Erlangen – Expedition des Schreber’schen säugthier- und des Esper’schen Schmetterlingswerkes. Ernst Mayr Library of the MCZ, 1774–1855 (Harvard, 1774).

  • Temminck, C. J. Monographies de Mammologie, ou description de quelques genres de Mammifères, dont les espèces ont été observes dans les différens Musées de l’Europe, Vol. 2, No. 302, 26–70 (G. Dufour et Ed. D’Ocagne, 1840).

  • Centeno-Cuadros, A. et al. Comparative phylogeography and asymmetric hybridization between cryptic bat species. J. Zool. Syst. Evol. Res. 57, 1004–1018 (2019).

    Article 

    Google Scholar 

  • Santos, H. et al. Shaping of bat cryptic distribution in Iberia. Biol. J. Linnean Soc. 112, 150–162 (2014).

    Article 

    Google Scholar 

  • Novella-Fernandez, R. et al. Broad-scale patterns of geographic avoidance between species emerge in the absence of fine-scale mechanisms of coexistence. Divers. Distrib. 27, 1606–1618 (2021).

    Article 

    Google Scholar 

  • Neubaum, M. A., Douglas, M. R., Douglas, M. E. & O’Shea, T. J. Molecular ecology of the big brown bat (Eptesicus fuscus): genetic and natural history variation in a hybrid zone. J. Mammal. 88, 1230–1238 (2007).

    Article 

    Google Scholar 

  • Worthington-Wilmer, J. & Barratt, E. A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res. News 37(1), 1–4 (1996).

    Google Scholar 

  • Illumination, I.C.o. A colour appearance model for colour management systems: CIECAM02. Technical Report No CIE 159, 2004 (2004).

  • Maroco, J. Análise estatística com utilização do SPSS. 3ª edição. Edições Silabo (2010).

  • Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).

    ADS 
    Article 

    Google Scholar 

  • Karatzoglou, A., Smola, A., Hornik, K. & Zeileis, A. Kernlab: an S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004).

    Article 

    Google Scholar 

  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. & Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://cran.r-project.org/web/packages/e1071/index.html (2012).

  • Redgwell, R. D., Szewczak, J. M., Jones, G. & Parsons, S. Classification of echolocation calls from 14 species of bat by support vector machines and ensembles of neural networks. Algorithms 2, 907–924 (2009).

    Article 

    Google Scholar 

  • Ochoa-López, S. et al. Ontogenetic changes in the targets of natural selection in three plant defenses. New Phytol. 226, 1480–1491 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Grant, P. R. & Grant, B. R. Phenotypic and genetics effects of hybridization in Darwin’s finches. Evol. Int. J. Org. Evol. 48, 297–316 (1994).

    Article 

    Google Scholar 

  • Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R. & Tabin, C. J. Bmp4 and morphological variation of beaks in Darwin’s finches. Science (New York, NY). 305, 1462–1465 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • von Holdt, B. M., Kays, R., Pollinger, J. P. & Wayne, R. K. Admixture mapping identifies introgressed genomic regions in North American canids. Mol. Ecol. 25, 2443–2453 (2016).

    Article 

    Google Scholar 

  • Santana, S. E., Strait, S. & Dumont, E. R. The better to eat you with: functional correlates of tooth structure in bats. Funct. Ecol. 25, 839–847 (2011).

    Article 

    Google Scholar 

  • Kalcounis, M. C. & Brigham, R. M. Intraspecific variation in wing loading affects habitat use by little brown bats (Myotis lucifugus). Can. J. Zool. 73, 89–95 (1995).

    Article 

    Google Scholar 

  • Muijres, F. T., Johansson, L. C., Winter, Y. & Anders, H. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization. J. R. Soc. Interface 8, 1418–1428 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bradley, B. J. & Mundy, N. I. The primate palette: the evolution of primate coloration. Evol. Anthropolo. Issues News Rev. 17, 97–111 (2008).

    Article 

    Google Scholar 

  • Müller, B. & Peichl, L. Retinal cone photoreceptors in microchiropteran bats. Investig. Ophthalmol. Vis. Sci. 46, 2259–2259 (2005).

    Google Scholar 

  • Winter, Y., López, J. & von Helversen, O. Ultraviolet vision in a bat. Nature 425, 612–614 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Caro, T. The adaptive significance of coloration in mammals. Bioscience 55, 125–136 (2005).

    Article 

    Google Scholar 

  • Chaverri, G., Ancillotto, L. & Russo, D. Social communication in bats. Biol. Rev. 93, 1938–1954 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Dietz, C., Von Helversen, O. & Nill, D. Bats of Britain, Europe and Northwest Africa 320–333 (A&C Black Publishers Ltd, 2009).

    Google Scholar 

  • Martinoli, A., Mazzamuto, M.V. & Spada, M. Serotine Eptesicus serotinus (Schreber, 1774). In Handbook of the Mammals of Europe, 1–17 (2020).

  • Dinger, G. Winternachweise von Breitflügelfledermaus (Eptesicus serotinus) in Kirchen. Nyctalus (N.F.) 7, 614–616 (1991).

    Google Scholar 

  • Kowalski, K. & Rzebik-Kowalska, B. Mammals of algeria (1991).

  • Novella-Fernandez, R. et al. Trophic resource partitioning drives fine-scale coexistence in cryptic bat species. Ecol. Evol. 10(24), 14122–14136 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Galván, I., Vargas-Mena, J. C. & Rodríguez-Herrera, B. Tent-roosting may have driven the evolution of yellow skin coloration in Stenodermatinae bats. J. Zool. Syst. Evol. Res. 58, 519–527 (2020).

    Article 

    Google Scholar 

  • Wang, Z. L., Zhang, D. Y. & Wang, G. Does spatial structure facilitate coexistence of identical competitors. Ecol. Model. 181, 17–23 (2005).

    Article 

    Google Scholar 

  • Anderson, T. M. et al. Molecular and evolutionary history of melanism in North American gray wolves. Science (New York, NY). 323, 1339–1343 (2009).

    ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Mingo-Casas, P. et al. First cases of European bat lyssavirus type 1 in Iberian serotine bats: implications for the molecular epidemiology of bat rabies in Europe. PLoS Negl. Trop. Dis. 12(4), e0006290 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Vázquez-Moron, S., Juste, J., Ibáñez, C., Berciano, J. M. & Echevarria, J. E. Phylogeny of European bat Lyssavirus 1 in Eptesicus isabellinus bats, Spain. Emerg. Infect. Dis. 17, 520–523 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Burgarella, C. et al. Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity 102, 442–452 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abrams, P. A. Character displacement and niche shift analyzed using consumer-resource models of competition. Theor. Popul. Biol. 29, 107–160 (1986).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Fisheries dataset on moulting patterns and shell quality of American lobsters H. americanus in Atlantic Canada

    A 26-year time series of mortality and growth of the Pacific oyster C. gigas recorded along French coasts