Caro, T., Izzo, A., Reiner, R. C., Walker, H. & Stankowich, T. The function of zebra stripes. Nat. Commun. 5, 3535 (2014).
Google Scholar
Merilaita, S., Scott-Samuel, N. E. & Cuthill, I. C. How camouflage works. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160341 (2017).
Google Scholar
Rowland, H. M. From Abbott Thayer to the present day: what have we learned about the function of countershading? Philos. Trans. R. Soc. B Biol. Sci. 364, 519–527 (2009).
Google Scholar
Rogalla, S. et al. The evolution of darker wings in seabirds in relation to temperature-dependent flight efficiency. J. R. Soc. Interface 18, 20210236.
Malling Olsen, K. Gulls of the World. (Princeton University Press, 2018).
Jawor, J. M. & Breitwisch, R. Melanin Ornaments, Honesty, and Sexual Selection. Auk 120, 249–265 (2003).
Google Scholar
Field, D. J. et al. Melanin Concentration Gradients in Modern and Fossil Feathers. PLOS ONE 8, e59451 (2013).
Google Scholar
McNamara, M. E. et al. Decoding the Evolution of Melanin in Vertebrates. Trends Ecol. Evol. 36, 430–443 (2021).
Google Scholar
Dufour, P. et al. Plumage colouration in gulls responds to their non-breeding climatic niche. Glob. Ecol. Biogeogr. 29, 1704–1715 (2020).
Google Scholar
Hassanalian, M., Abdelmoula, H., Ben Ayed, S. & Abdelkefi, A. Thermal impact of migrating birds’ wing color on their flight performance: Possibility of new generation of biologically inspired drones. J. Therm. Biol. 66, 27–32 (2017).
Google Scholar
Hassanalian, M., Throneberry, G., Ali, M., Ben Ayed, S. & Abdelkefi, A. Role of wing color and seasonal changes in ambient temperature and solar irradiation on predicted flight efficiency of the Albatross. J. Therm. Biol. 71, 112–122 (2018).
Google Scholar
Spear, L. B. & Ainley, D. G. Flight behaviour of seabirds in relation to wind direction and wing morphology. Ibis 139, 221–233 (1997).
Google Scholar
Sullivan, T. N., Meyers, M. A. & Arzt, E. Scaling of bird wings and feathers for efficient flight. Sci. Adv. 5, eaat4269.
Pennycuick, C. J. Modelling the Flying Bird. (Elsevier, 2008).
Buffo, J., Fritschen, L. J. & Murphy, J. L. Direct Solar Radiation on Various Slopes from 0 to 60 Degrees North Latitude. (Pacific Northwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, 1972).
Hansen, T. F. Stabilizing Selection and the Comparative Analysis of Adaptation. Evolution 51, 1341–1351 (1997).
Google Scholar
Hansen, T. F., Pienaar, J. & Orzack, S. H. A Comparative Method for Studying Adaptation to a Randomly Evolving Environment. Evolution 62, 1965–1977 (2008).
Google Scholar
Roulin, A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol. Rev. 91, 328–348 (2016).
Google Scholar
Rayner, J. M. V. FORM AND FUNCTION IN AVIAN FLIGHT. in Current Ornithology vol. 5 1–66 (Plenum Press, 1988).
Schreiber, E. A. & Burger, J. Biology of Marine Birds. (CRC Press, 2001).
Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).
Google Scholar
Shamoun-Baranes, J. & van Loon, E. Energetic influence on gull flight strategy selection. J. Exp. Biol. 209, 3489–3498 (2006).
Google Scholar
Pennycuick, C. J. & Lighthill, M. J. The flight of petrels and albatrosses (procellariiformes), observed in South Georgia and its vicinity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 300, 75–106 (1982).
Google Scholar
Rogalla, S., Shawkey, M. D. & D’Alba, L. Thermal effects of plumage coloration. Ibis 164, 933–948 (2022).
Google Scholar
Flinks, H. & Salewski, V. Quantifying the effect of feather abrasion on wing and tail lengths measurements. J. Ornithol. 153, 1053–1065 (2012).
Google Scholar
Hill, G. E. Sexiness, Individual Condition, and Species Identity: The Information Signaled by Ornaments and Assessed by Choosing Females. Evol. Biol. 42, 251–259 (2015).
Google Scholar
Sonsthagen, S. A. et al. Recurrent hybridization and recent origin obscure phylogenetic relationships within the ‘white-headed’ gull (Larus sp.) complex. Mol. Phylogenet. Evol. 103, 41–54 (2016).
Google Scholar
Howell, S. & Dunn, J. A reference guide to gulls of the Americas. (Houghton Mifflin Company, 2007).
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Google Scholar
Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).
Google Scholar
Yalden, D. Wing area, wing growth and wing loading of Common Sandpipers Actitis hypoleucos. Wader Study Group Bull. 119, 84–88 (2012).
Ho, L. S. T. & Ane, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (2021).
Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016).
Google Scholar
Harmon, L. J. Phylogenetic Comparative Methods: Learning from Trees. (CreateSpace Independent Publishing Platform, 2018).
Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Google Scholar
Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430 (2019).
Google Scholar
Li, M. & Bolker, B. wzmli/phyloglmm: First release of phylogenetic comparative analysis in lme4-verse. https://doi.org/10.5281/zenodo.2639887 (2019).
Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).
Google Scholar
Goumas, M. Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae. Zenodo, https://doi.org/10.5281/zenodo.7156454 (2022).
Source: Ecology - nature.com