in

Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae

  • Caro, T., Izzo, A., Reiner, R. C., Walker, H. & Stankowich, T. The function of zebra stripes. Nat. Commun. 5, 3535 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Merilaita, S., Scott-Samuel, N. E. & Cuthill, I. C. How camouflage works. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160341 (2017).

    Article 

    Google Scholar 

  • Rowland, H. M. From Abbott Thayer to the present day: what have we learned about the function of countershading? Philos. Trans. R. Soc. B Biol. Sci. 364, 519–527 (2009).

    Article 

    Google Scholar 

  • Rogalla, S. et al. The evolution of darker wings in seabirds in relation to temperature-dependent flight efficiency. J. R. Soc. Interface 18, 20210236.

  • Malling Olsen, K. Gulls of the World. (Princeton University Press, 2018).

  • Jawor, J. M. & Breitwisch, R. Melanin Ornaments, Honesty, and Sexual Selection. Auk 120, 249–265 (2003).

    Article 

    Google Scholar 

  • Field, D. J. et al. Melanin Concentration Gradients in Modern and Fossil Feathers. PLOS ONE 8, e59451 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McNamara, M. E. et al. Decoding the Evolution of Melanin in Vertebrates. Trends Ecol. Evol. 36, 430–443 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dufour, P. et al. Plumage colouration in gulls responds to their non-breeding climatic niche. Glob. Ecol. Biogeogr. 29, 1704–1715 (2020).

    Article 

    Google Scholar 

  • Hassanalian, M., Abdelmoula, H., Ben Ayed, S. & Abdelkefi, A. Thermal impact of migrating birds’ wing color on their flight performance: Possibility of new generation of biologically inspired drones. J. Therm. Biol. 66, 27–32 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hassanalian, M., Throneberry, G., Ali, M., Ben Ayed, S. & Abdelkefi, A. Role of wing color and seasonal changes in ambient temperature and solar irradiation on predicted flight efficiency of the Albatross. J. Therm. Biol. 71, 112–122 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spear, L. B. & Ainley, D. G. Flight behaviour of seabirds in relation to wind direction and wing morphology. Ibis 139, 221–233 (1997).

    Article 

    Google Scholar 

  • Sullivan, T. N., Meyers, M. A. & Arzt, E. Scaling of bird wings and feathers for efficient flight. Sci. Adv. 5, eaat4269.

  • Pennycuick, C. J. Modelling the Flying Bird. (Elsevier, 2008).

  • Buffo, J., Fritschen, L. J. & Murphy, J. L. Direct Solar Radiation on Various Slopes from 0 to 60 Degrees North Latitude. (Pacific Northwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, 1972).

  • Hansen, T. F. Stabilizing Selection and the Comparative Analysis of Adaptation. Evolution 51, 1341–1351 (1997).

    Article 
    PubMed 

    Google Scholar 

  • Hansen, T. F., Pienaar, J. & Orzack, S. H. A Comparative Method for Studying Adaptation to a Randomly Evolving Environment. Evolution 62, 1965–1977 (2008).

    PubMed 

    Google Scholar 

  • Roulin, A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol. Rev. 91, 328–348 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Rayner, J. M. V. FORM AND FUNCTION IN AVIAN FLIGHT. in Current Ornithology vol. 5 1–66 (Plenum Press, 1988).

  • Schreiber, E. A. & Burger, J. Biology of Marine Birds. (CRC Press, 2001).

  • Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).

    Article 

    Google Scholar 

  • Shamoun-Baranes, J. & van Loon, E. Energetic influence on gull flight strategy selection. J. Exp. Biol. 209, 3489–3498 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Pennycuick, C. J. & Lighthill, M. J. The flight of petrels and albatrosses (procellariiformes), observed in South Georgia and its vicinity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 300, 75–106 (1982).

    Article 

    Google Scholar 

  • Rogalla, S., Shawkey, M. D. & D’Alba, L. Thermal effects of plumage coloration. Ibis 164, 933–948 (2022).

    Article 

    Google Scholar 

  • Flinks, H. & Salewski, V. Quantifying the effect of feather abrasion on wing and tail lengths measurements. J. Ornithol. 153, 1053–1065 (2012).

    Article 

    Google Scholar 

  • Hill, G. E. Sexiness, Individual Condition, and Species Identity: The Information Signaled by Ornaments and Assessed by Choosing Females. Evol. Biol. 42, 251–259 (2015).

    Article 

    Google Scholar 

  • Sonsthagen, S. A. et al. Recurrent hybridization and recent origin obscure phylogenetic relationships within the ‘white-headed’ gull (Larus sp.) complex. Mol. Phylogenet. Evol. 103, 41–54 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Howell, S. & Dunn, J. A reference guide to gulls of the Americas. (Houghton Mifflin Company, 2007).

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Yalden, D. Wing area, wing growth and wing loading of Common Sandpipers Actitis hypoleucos. Wader Study Group Bull. 119, 84–88 (2012).

    Google Scholar 

  • Ho, L. S. T. & Ane, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

    Article 
    PubMed 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (2021).

  • Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016).

    Article 

    Google Scholar 

  • Harmon, L. J. Phylogenetic Comparative Methods: Learning from Trees. (CreateSpace Independent Publishing Platform, 2018).

  • Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430 (2019).

    Article 

    Google Scholar 

  • Li, M. & Bolker, B. wzmli/phyloglmm: First release of phylogenetic comparative analysis in lme4-verse. https://doi.org/10.5281/zenodo.2639887 (2019).

  • Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Goumas, M. Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae. Zenodo, https://doi.org/10.5281/zenodo.7156454 (2022).


  • Source: Ecology - nature.com

    Machinery of the state

    Extinction magnitude of animals in the near future