Blume-Werry, G. et al. Invasive earthworms unlock arctic plant nitrogen limitation. Nat. Commun. 11, 1–10 (2020).
Google Scholar
Marhan, S. & Scheu, S. Mixing of different mineral soil layers by endogeic earthworms affects carbon and nitrogen mineralization. Biol. Fertil. Soils 42, 308 (2006).
Google Scholar
Sanchez-Hernandez, J. C. Vermiremediation of Pharmaceutical-Contaminated Soils and Organic Amendments (Springer, Berlin, 2020).
Google Scholar
Gómez-Brandón, M., Aira, M., Lores, M. & Domínguez, J. Changes in microbial community structure and function during vermicomposting of pig slurry. Bioresour. Technol. 102, 4171–4178. https://doi.org/10.1016/j.biortech.2010.12.057 (2011).
Google Scholar
Aira, M. & Domínguez, J. Earthworm effects without earthworms: Inoculation of raw organic matter with worm-worked substrates alters microbial community functioning. PLoS ONE 6, e16354. https://doi.org/10.1371/journal.pone.0016354 (2011).
Google Scholar
Blair, J., Parmelee, R. W., Allen, M. F., McCartney, D. & Stinner, B. R. Changes in soil N pools in response to earthworm population manipulations in agroecosystem with different N sources. Soil Biol. Biochem. 29, 361–367. https://doi.org/10.1016/S0038-0717(96)00098-3 (1997).
Google Scholar
Abail, Z. & Whalen, J. K. Earthworm contributions to soil nitrogen supply in corn-soybean agroecosystems in Quebec. Canada. Pedosphere 31, 405–412. https://doi.org/10.1016/S1002-0160(20)60086-8 (2021).
Google Scholar
Frelich, L. E. et al. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biol. Invasions 8, 1235–1245. https://doi.org/10.1007/s10530-006-9019-3 (2006).
Google Scholar
Ding, W. et al. Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics. Sci. Total Environ. 781, 146884 (2021).
Google Scholar
Treder, K., Jastrzębska, M., Kostrzewska, M. K. & Makowski, P. Do long-term continuous cropping and pesticides affect earthworm communities?. Agronomy 10, 586 (2020).
Google Scholar
Fonte, S. J., Kong, A. Y. Y., van Kessel, C., Hendrix, P. F. & Six, J. Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management. Soil Biol. Biochem. 39, 1014–1022. https://doi.org/10.1016/j.soilbio.2006.11.011 (2007).
Google Scholar
Scheu, S., Schlitt, N., Tiunov, A. V., Newington, J. E. & Jones, H. T. Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia 133, 254–260. https://doi.org/10.1007/s00442-002-1023-4 (2002).
Google Scholar
Sheikh, T. et al. Unveiling the efficiency of psychrophillic aporrectodea caliginosa in deciphering the nutrients from dalweed and cow manure with bio-optimization of coprolites. Sustainability 13, 5338 (2021).
Google Scholar
Lavelle, P. & Spain, A. V. Soil Ecology (Springer, Dordrecht, 2001).
Google Scholar
Aubert, L., Konradova, D., Barris, S. & Quinet, M. Different drought resistance mechanisms between two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. Physiol. Plant. https://doi.org/10.1111/ppl.13248 (2020).
Google Scholar
Sistla, S. A., Asao, S. & Schimel, J. P. Detecting microbial N-limitation in tussock tundra soil: Implications for Arctic soil organic carbon cycling. Soil Biol. Biochem. 55, 78–84. https://doi.org/10.1016/j.soilbio.2012.06.010 (2012).
Google Scholar
Chkrebtii, O. A., Cameron, E. K., Campbell, D. A. & Bayne, E. M. Transdimensional approximate Bayesian computation for inference on invasive species models with latent variables of unknown dimension. Comput. Stat. Data Anal. 86, 97–110. https://doi.org/10.1016/j.csda.2015.01.002 (2015).
Google Scholar
Szlavecz, K. et al. Invasive earthworm species and nitrogen cycling in remnant forest patches. Appl. Soil. Ecol. 32, 54–62. https://doi.org/10.1016/j.apsoil.2005.01.006 (2006).
Google Scholar
Liu, M., Cao, J. & Wang, C. Bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil. Ecotoxicol. Environ. Saf. 189, 109996 (2020).
Google Scholar
Lubbers, I. M. et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Change 3, 187–194. https://doi.org/10.1038/nclimate1692 (2013).
Google Scholar
Wang, Z., Chen, Z., Niu, Y., Ren, P. & Hao, M. Feasibility of vermicomposting for spent drilling fluid from a nature-gas industry employing earthworms Eisenia fetida. Ecotoxicol. Environ. Saf. 214, 111994 (2021).
Google Scholar
Elyamine, A. M. & Hu, C. Earthworms and rice straw enhanced soil bacterial diversity and promoted the degradation of phenanthrene. Environ. Sci. Eur. 32, 124. https://doi.org/10.1186/s12302-020-00400-y (2020).
Google Scholar
Sun, M. et al. Ecological role of earthworm intestinal bacteria in terrestrial environments: A review. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140008 (2020).
Google Scholar
Turp, G. A., Turp, S. M., Ozdemir, S. & Yetilmezsoy, K. Vermicomposting of biomass ash with bio-waste for solubilizing nutrients and its effect on nitrogen fixation in common beans. Environ. Technol. Innov. https://doi.org/10.1016/j.eti.2021.101691 (2021).
Google Scholar
Lv, B., Zhang, D., Chen, Q. & Cui, Y. Effects of earthworms on nitrogen transformation and the correspond genes (amoA and nirS) in vermicomposting of sewage sludge and rice straw. Bioresour. Technol. 287, 121428. https://doi.org/10.1016/j.biortech.2019.121428 (2019).
Google Scholar
Sharma, K. & Garg, V. K. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour. Technol. 250, 708–715. https://doi.org/10.1016/j.biortech.2017.11.101 (2018).
Google Scholar
Castillo Diaz, J. M., Martin-Laurent, F., Beguet, J., Nogales, R. & Romero, E. Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance. Sci. Total Environ. 579, 1111–1119. https://doi.org/10.1016/j.scitotenv.2016.11.082 (2017).
Google Scholar
Samal, K., Raj Mohan, A., Chaudhary, N. & Moulick, S. Application of vermitechnology in waste management: A review on mechanism and performance. J. Environ. Chem. Eng. 7, 103392. https://doi.org/10.1016/j.jece.2019.103392 (2019).
Google Scholar
Katakula, A. A. N., Handura, B., Gawanab, W., Itanna, F. & Mupambwa, H. A. Optimized vermicomposting of a goat manure-vegetable food waste mixture for enhanced nutrient release. Sci. Afr. 12, e00727 (2021).
Cáceres, R., Malińska, K. & Marfà, O. Nitrification within composting: A review. Waste Manag. 72, 119–137. https://doi.org/10.1016/j.wasman.2017.10.049 (2018).
Google Scholar
Lv, B., Cui, Y., Wei, H., Chen, Q. & Zhang, D. Elucidating the role of earthworms in N2O emission and production pathway during vermicomposting of sewage sludge and rice straw. J. Hazard. Mater. 400, 123215 (2020).
Google Scholar
Zhang, L. et al. The non-negligibility of greenhouse gas emission from a combined pre-composting and vermicomposting system with maize stover and cow dung. Environ. Sci. Pollut. Res. 28, 19412–19423 (2021).
Google Scholar
Chen, C., Whalen, J. K. & Guo, X. Earthworms reduce soil nitrous oxide emissions during drying and rewetting cycles. Soil Biol. Biochem. 68, 117–124. https://doi.org/10.1016/j.soilbio.2013.09.020 (2014).
Google Scholar
Wang, X. et al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage. Water Res. 77, 191–200. https://doi.org/10.1016/j.watres.2015.03.019 (2015).
Google Scholar
Yang, Z., Sun, H. & Wu, W. Intensified simultaneous nitrification and denitrification performance in integrated packed bed bioreactors using PHBV with different dosing methods. Environ. Sci. Pollut. Res. 27, 21560–21569. https://doi.org/10.1007/s11356-020-08290-6 (2020).
Google Scholar
Pan, Z. et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process. Bioresour. Technol. 301, 122726. https://doi.org/10.1016/j.biortech.2019.122726 (2020).
Google Scholar
Xia, L., Li, X., Fan, W. & Wang, J. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp .ND7 isolated from municipal activated sludge. Bioresour. Technol. 301, 122749. https://doi.org/10.1016/j.biortech.2020.122749 (2020).
Google Scholar
Dad, J. M. & Khan, A. B. Threatened medicinal plants of Gurez Valley, Kashmir Himalayas. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 7, 20–26. https://doi.org/10.1080/21513732.2011.602646 (2011).
Google Scholar
Cameira, M. D. & Mota, M. Nitrogen related diffuse pollution from horticulture production—mitigation practices and assessment strategies. Horticulturae https://doi.org/10.3390/horticulturae3010025 (2017).
Google Scholar
Yuvaraj, A., Thangaraj, R., Ravindran, B., Chang, S. W. & Karmegam, N. Centrality of cattle solid wastes in vermicomposting technology—A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environ. Pollut. 268, 115688. https://doi.org/10.1016/j.envpol.2020.115688 (2021).
Google Scholar
Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5 (2000).
Google Scholar
Bertrand, M. et al. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35, 553–567 (2015).
Google Scholar
Makoto, K., Bryanin, S. V. & Takagi, K. The effect of snow reduction and Eisenia japonica earthworm traits on soil nitrogen dynamics in spring in a cool-temperate forest. Appl. Soil. Ecol. 144, 1–7. https://doi.org/10.1016/j.apsoil.2019.06.019 (2019).
Google Scholar
Huang, K. et al. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes. Environ. Sci. Pollut. Res. Int. 23, 13569–13575. https://doi.org/10.1007/s11356-016-6848-1 (2016).
Google Scholar
Makoto, K., Minamiya, Y. & Kaneko, N. Differences in soil type drive the intraspecific variation in the responses of an earthworm species and consequently, tree growth to warming. Plant Soil 404, 209–218. https://doi.org/10.1007/s11104-016-2827-z (2016).
Google Scholar
Grenon, F., Bradley, R. L. & Titus, B. D. Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification: possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biol. Biochem. 36, 1465–1474. https://doi.org/10.1016/j.soilbio.2004.04.021 (2004).
Google Scholar
Zhang, H., Li, J., Zhang, Y. & Huang, K. Quality of vermicompost and microbial community diversity affected by the contrasting temperature during vermicomposting of dewatered sludge. Int. J. Env. Res. Public Health 17, 1748 (2020).
Google Scholar
Velasco-Velasco, J., Parkinson, R. & Kuri, V. Ammonia emissions during vermicomposting of sheep manure. Bioresour. Technol. 102, 10959–10964 (2011).
Google Scholar
Dan, X. et al. Effects of changing temperature on gross N transformation rates in acidic subtropical forest soils. Forests 10, 894 (2019).
Google Scholar
Gusain, R. & Suthar, S. Vermicomposting of invasive weed Ageratum conyzoids: Assessment of nutrient mineralization, enzymatic activities, and microbial properties. Bioresour. Technol. 312, 123537 (2020).
Google Scholar
Klaasen, H. L., Koopman, J. P., Poelma, F. G. & Beynen, A. C. Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev. 8, 165–180. https://doi.org/10.1111/j.1574-6968.1992.tb04986.x (1992).
Google Scholar
Fischer, K., Hahn, D., Daniel, O., Zeyer, J. & Amann, R. I. In situ analysis of the bacterial community in the gut of the earthworm Lumbricus terrestris L. by whole-cell hybridization. Can. J. Microbiol. 41, 666–673. https://doi.org/10.1139/m95-092 (1995).
Google Scholar
Karsten, G. R. & Drake, H. L. Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Appl. Environ. Microbiol. 61, 1039–1044. https://doi.org/10.1128/AEM.61.3.1039-1044.1995 (1995).
Google Scholar
Hobson, A. M., Frederickson, J. & Dise, N. B. CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manag. 25, 345–352. https://doi.org/10.1016/j.wasman.2005.02.015 (2005).
Google Scholar
Singh, A. et al. Earthworms and vermicompost: An eco-friendly approach for repaying nature’s debt. Environ. Geochem. Health 42, 1617–1642 (2020).
Google Scholar
Zedelius, J. et al. Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol. Rep. 3, 125–135. https://doi.org/10.1111/j.1758-2229.2010.00198.x (2011).
Google Scholar
Liu, R., Suter, H. C., He, J.-Z., Hayden, H. & Chen, D. Influence of temperature and moisture on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil. J. Soils Sed. https://doi.org/10.1007/s11368-015-1170-y (2015).
Google Scholar
Zhang, Y. et al. Composition of soil recalcitrant C regulates nitrification rates in acidic soils. Geoderma 337, 965–972. https://doi.org/10.1016/j.geoderma.2018.11.014 (2019).
Google Scholar
Zhang, J., Sun, W., Zhong, W. & Cai, Z. The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils. Soil Biol. Biochem. 76, 143–148. https://doi.org/10.1016/j.soilbio.2014.05.001 (2014).
Google Scholar
Abail, Z., Sampedro, L. & Whalen, J. K. Short-term carbon mineralization from endogeic earthworm casts as influenced by properties of the ingested soil material. Appl. Soil. Ecol. 116, 79–86 (2017).
Google Scholar
Coq, S., Barthès, B. G., Oliver, R., Rabary, B. & Blanchart, E. Earthworm activity affects soil aggregation and organic matter dynamics according to the quality and localization of crop residues—an experimental study (Madagascar). Soil Biol. Biochem. 39, 2119–2128 (2007).
Google Scholar
Medina-Sauza, R. M. et al. Earthworms building up soil microbiota, a review. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00081 (2019).
Google Scholar
Aira, M., Monroy, F. & Domínguez, J. Ageing effects on nitrogen dynamics and enzyme activities in casts of Aporrectodea caliginosa (Lumbricidae). Pedobiologia 49, 467–473 (2005).
Google Scholar
Clause, J., Barot, S., Richard, B., Decaëns, T. & Forey, E. The interactions between soil type and earthworm species determine the properties of earthworm casts. Appl. Soil. Ecol. 83, 149–158 (2014).
Google Scholar
McDaniel, J. P., Stromberger, M. E., Barbarick, K. A. & Cranshaw, W. Survival of Aporrectodea caliginosa and its effects on nutrient availability in biosolids amended soil. Appl. Soil. Ecol. 71, 1–6 (2013).
Google Scholar
Ravishankara, A., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).
Google Scholar
Lubbers, I., Brussaard, L., Otten, W. & Van Groenigen, J. Earthworm-induced N mineralization in fertilized grassland increases both N2O emission and crop-N uptake. Eur. J. Soil Sci. 62, 152–161 (2011).
Google Scholar
Peter, S. D. J., George, G. B., Siu, M. T., Marcus, A. H. & Harold, L. D. Emission of nitrous oxide and dinitrogen by diverse earthworm families from Brazil and resolution of associated denitrifying and nitrate-dissimilating taxa. FEMS Microbiol. Ecol. 83, 375–391. https://doi.org/10.1111/j.1574-6941.2012.01476.x (2013).
Google Scholar
Firestone, M. K. & Davidson, E. A. Microbiological basis of NO and N2O production and consumption in soil. Exch. Trace Gases terr. Ecosyst. Atmos. 47, 7–21 (1989).
Google Scholar
Zhu, X. et al. Exploring the relationships between soil fauna, different tillage regimes and CO2 and N2O emissions from black soil in China. Soil Biol. Biochem. 103, 106–116 (2016).
Google Scholar
Yu, D.-S. et al. Simultaneous nitrogen and phosphorus removal characteristics of an anaerobic/aerobic operated spndpr system treating low C/N urban sewage. Huan Jing ke Xue Huanjing Kexue 39, 5065–5073 (2018).
Google Scholar
Wang, F., Zhao, Y., Xie, S. & Li, J. Implication of nitrifying and denitrifying bacteria for nitrogen removal in a shallow lake. Clean: Soil, Air, Water 45, 1500319 (2017).
Wang, J. et al. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure. Waste Manag. 34, 1546–1552. https://doi.org/10.1016/j.wasman.2014.04.010 (2014).
Google Scholar
Nigussie, A., Kuyper, T. W., Bruun, S. & de Neergaard, A. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J. Clean. Prod. 139, 429–439. https://doi.org/10.1016/j.jclepro.2016.08.058 (2016).
Google Scholar
Yang, F., Li, G., Zang, B. & Zhang, Z. The maturity and CH4, N2O, NH3 emissions from vermicomposting with agricultural waste. Compost Sci. Util. 25, 262–271. https://doi.org/10.1080/1065657X.2017.1329037 (2017).
Google Scholar
Ma, L. et al. Soil properties alter plant and microbial communities to modulate denitrification rates in subtropical riparian wetlands. Land Degrad. Dev. 31, 1792–1802 (2020).
Google Scholar
Xu, X. et al. Effective nitrogen removal in a granule-based partial-denitrification/anammox reactor treating low C/N sewage. Bioresour. Technol. 297, 122467 (2020).
Google Scholar
Ma, X., Xing, M., Wang, Y., Xu, Z. & Yang, J. Microbial enzyme and biomass responses: Deciphering the effects of earthworms and seasonal variation on treating excess sludge. J. Environ. Manag. 170, 207–214. https://doi.org/10.1016/j.jenvman.2016.01.022 (2016).
Google Scholar
Kremen, A., Bear, J., Shavit, U. & Shaviv, A. Model demonstrating the potential for coupled nitrification denitrification in soil aggregates. Environ. Sci. Technol. 39, 4180–4188. https://doi.org/10.1021/es048304z (2005).
Google Scholar
Zhang, Y., Song, C., Zhou, Z., Cao, X. & Zhou, Y. Coupling between nitrification and denitrification as well as its effect on phosphorus release in sediments of Chinese Shallow Lakes. Water 11, 1809 (2019).
Google Scholar
Das, D. & Deka, H. Vermicomposting of harvested waste biomass of potato crop employing Eisenia fetida: Changes in nutrient profile and assessment of the maturity of the end products. Environ. Sci. Pollut. Res. 28, 35717–35727 (2021).
Google Scholar
Fernández-Gómez, M. J., Romero, E. & Nogales, R. Feasibility of vermicomposting for vegetable greenhouse waste recycling. Bioresour. Technol. 101, 9654–9660. https://doi.org/10.1016/j.biortech.2010.07.109 (2010).
Google Scholar
Biruntha, M. et al. Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresour. Technol. 297, 122398 (2020).
Google Scholar
Devi, C. & Khwairakpam, M. Feasibility of vermicomposting for the management of terrestrial weed Ageratum conyzoides using earthworm species Eisenia fetida. Environ. Technol. Innov. 18, 100696. https://doi.org/10.1016/j.eti.2020.100696 (2020).
Google Scholar
Garg, P., Gupta, A. & Satya, S. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresour. Technol. 97, 391–395. https://doi.org/10.1016/j.biortech.2005.03.009 (2006).
Google Scholar
Huang, K., Li, F., Wei, Y., Fu, X. & Chen, X. Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes. Bioresour. Technol. 170, 45–52. https://doi.org/10.1016/j.biortech.2014.07.058 (2014).
Google Scholar
Gusain, R. & Suthar, S. Vermicomposting of duckweed (Spirodela polyrhiza) by employing Eisenia fetida: Changes in nutrient contents, microbial enzyme activities and earthworm biodynamics. Bioresour. Technol. 311, 123585 (2020).
Google Scholar
Karmegam, N. et al. Precomposting and green manure amendment for effective vermitransformation of hazardous coir industrial waste into enriched vermicompost. Bioresour. Technol. 319, 124136. https://doi.org/10.1016/j.biortech.2020.124136 (2021).
Google Scholar
Bhattacharya, S. S. & Chattopadhyay, G. N. Transformation of nitrogen during vermicomposting of fly ash. Waste Manag. Res. 22, 488–491. https://doi.org/10.1177/0734242X04048625 (2004).
Google Scholar
Hussain, N., Abbasi, T. & Abbasi, S. Transformation of the pernicious and toxic weed parthenium into an organic fertilizer by vermicomposting. Int. J. Environ. Stud. 73, 731–745 (2016).
Google Scholar
Rai, R. & Suthar, S. Composting of toxic weed Parthenium hysterophorus: Nutrient changes, the fate of faecal coliforms, and biopesticide property assessment. Bioresour. Technol. 311, 123523 (2020).
Google Scholar
Whalen, J. K., Parmelee, R. W. & Subler, S. Quantification of nitrogen excretion rates for three lumbricid earthworms using 15N. Biol. Fertil. Soils 32, 347–352. https://doi.org/10.1007/s003740000259 (2000).
Google Scholar
Esmaeili, A., Khoram, M. R., Gholami, M. & Eslami, H. Pistachio waste management using combined composting-vermicomposting technique: Physico-chemical changes and worm growth analysis. J. Clean. Prod. 242, 118523 (2020).
Google Scholar
Karmegam, N., Vijayan, P., Prakash, M. & Paul, J. A. J. Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. J. Clean. Prod. 228, 718–728 (2019).
Google Scholar
Paul, J. A., Karmegam, N. & Daniel, T. Municipal solid waste (MSW) vermicomposting with an epigeic earthworm Perionyx ceylanensis Mich. Bioresour. Technol. 102, 6769–6773. https://doi.org/10.1016/j.biortech.2011.03.089 (2011).
Google Scholar
Huang, K., Xia, H., Cui, G. & Li, F. Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes. Sci. Total Environ. 578, 337–345. https://doi.org/10.1016/j.scitotenv.2016.10.172 (2017).
Google Scholar
Mokgophi, M. M., Manyevere, A., Ayisi, K. K. & Munjonji, L. Characterisation of chamaecytisus tagasaste, moringa oleifera and vachellia karroo vermicomposts and their potential to improve soil fertility. Sustainability 12, 9305 (2020).
Google Scholar
Pathma, J. & Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1, 26–26. https://doi.org/10.1186/2193-1801-1-26 (2012).
Google Scholar
Villar, I., Alves, D., Pérez-Díaz, D. & Mato, S. Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge. Waste Manag. 48, 409–417 (2016).
Google Scholar
Wang, Y. et al. Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresour. Technol. 245, 411–418 (2017).
Google Scholar
Svensson, B. H., Boström, U. & Klemedtson, L. Potential for higher rates of denitrification in earthworm casts than in the surrounding soil. Biol. Fertil. Soils 2, 147–149. https://doi.org/10.1007/BF00257593 (1986).
Google Scholar
Syers, J. K. & Springett, J. A. Earthworms and Soil Fertility. In Biological Processes and Soil Fertility (eds Tinsley, J. & Darbyshire, J. F.) 93–104 (Springer Netherlands, Dordrecht, 1984).
Google Scholar
Mohanty, S. R. et al. nitrification rates are affected by biogenic nitrate and volatile organic compounds in agricultural soils. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00772 (2019).
Google Scholar
Cui, G. et al. Changes of quinolone resistance genes and their relations with microbial profiles during vermicomposting of municipal excess sludge. Sci. Total Environ. 644, 494–502 (2018).
Google Scholar
Paliwal, R. & Julka, J. Checklist of earthworms of western Himalaya, India. Zoos’ Print J. 20, 1972–1976 (2005).
Google Scholar
Gal, C., Frenzel, W. & Möller, J. Re-examination of the cadmium reduction method and optimisation of conditions for the determination of nitrate by flow injection analysis. Microchim. Acta 146, 155–164. https://doi.org/10.1007/s00604-004-0193-7 (2004).
Google Scholar
Schmidt, L. W. in Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties (ed A.L. Page) 1027–1042 (1982).
Yoshinari, T., Hynes, R. & Knowles, R. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 9, 177–183. https://doi.org/10.1016/0038-0717(77)90072-4 (1977).
Google Scholar
Parkin, T. B. Automated analysis of nitrous oxide. Soil Sci. Soc. Am. J. 49, 273 (1985).
Google Scholar
Hussain, M. et al. Bacteria in combination with fertilizers improve growth, productivity and net returns of wheat (Triticum aestivum L.). Pak. J. Agric. Sci. https://doi.org/10.21162/PAKJAS/16.4901 (2016).
Google Scholar
Gislin, D., Sudarsanam, D., Antony Raj, G. & Baskar, K. Antibacterial activity of soil bacteria isolated from Kochi, India and their molecular identification. J Genet. Eng. Biotechnol. 16, 287–294. https://doi.org/10.1016/j.jgeb.2018.05.010 (2018).
Google Scholar
Rashid, K. M. H., Mohiuddin, M. & Rahman, M. Enumeration, isolation and identification of nitrogen-fixing bacterial strains at seedling stage in rhizosphere of rice grown in non-calcareous grey flood plain soil of Bangladesh. J. Fac. Environ. Sci. Technol. 13, 97 (2008).
Williams, S. & Association of Official Analytical, C. Official methods of analysis of the Association of official analytical chemists. (Association of official analytical chemists, 1984).
Source: Ecology - nature.com