in

Deciphering waste bound nitrogen by employing psychrophillic Aporrectodea caliginosa and priming of coprolites by associated heterotrophic nitrifiers under high altitude Himalayas

  • Blume-Werry, G. et al. Invasive earthworms unlock arctic plant nitrogen limitation. Nat. Commun. 11, 1–10 (2020).

    Article 
    CAS 

    Google Scholar 

  • Marhan, S. & Scheu, S. Mixing of different mineral soil layers by endogeic earthworms affects carbon and nitrogen mineralization. Biol. Fertil. Soils 42, 308 (2006).

    Article 

    Google Scholar 

  • Sanchez-Hernandez, J. C. Vermiremediation of Pharmaceutical-Contaminated Soils and Organic Amendments (Springer, Berlin, 2020).

    Book 

    Google Scholar 

  • Gómez-Brandón, M., Aira, M., Lores, M. & Domínguez, J. Changes in microbial community structure and function during vermicomposting of pig slurry. Bioresour. Technol. 102, 4171–4178. https://doi.org/10.1016/j.biortech.2010.12.057 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Aira, M. & Domínguez, J. Earthworm effects without earthworms: Inoculation of raw organic matter with worm-worked substrates alters microbial community functioning. PLoS ONE 6, e16354. https://doi.org/10.1371/journal.pone.0016354 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blair, J., Parmelee, R. W., Allen, M. F., McCartney, D. & Stinner, B. R. Changes in soil N pools in response to earthworm population manipulations in agroecosystem with different N sources. Soil Biol. Biochem. 29, 361–367. https://doi.org/10.1016/S0038-0717(96)00098-3 (1997).

    CAS 
    Article 

    Google Scholar 

  • Abail, Z. & Whalen, J. K. Earthworm contributions to soil nitrogen supply in corn-soybean agroecosystems in Quebec. Canada. Pedosphere 31, 405–412. https://doi.org/10.1016/S1002-0160(20)60086-8 (2021).

    Article 

    Google Scholar 

  • Frelich, L. E. et al. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biol. Invasions 8, 1235–1245. https://doi.org/10.1007/s10530-006-9019-3 (2006).

    Article 

    Google Scholar 

  • Ding, W. et al. Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics. Sci. Total Environ. 781, 146884 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Treder, K., Jastrzębska, M., Kostrzewska, M. K. & Makowski, P. Do long-term continuous cropping and pesticides affect earthworm communities?. Agronomy 10, 586 (2020).

    CAS 
    Article 

    Google Scholar 

  • Fonte, S. J., Kong, A. Y. Y., van Kessel, C., Hendrix, P. F. & Six, J. Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management. Soil Biol. Biochem. 39, 1014–1022. https://doi.org/10.1016/j.soilbio.2006.11.011 (2007).

    CAS 
    Article 

    Google Scholar 

  • Scheu, S., Schlitt, N., Tiunov, A. V., Newington, J. E. & Jones, H. T. Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia 133, 254–260. https://doi.org/10.1007/s00442-002-1023-4 (2002).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Sheikh, T. et al. Unveiling the efficiency of psychrophillic aporrectodea caliginosa in deciphering the nutrients from dalweed and cow manure with bio-optimization of coprolites. Sustainability 13, 5338 (2021).

    CAS 
    Article 

    Google Scholar 

  • Lavelle, P. & Spain, A. V. Soil Ecology (Springer, Dordrecht, 2001).

    Book 

    Google Scholar 

  • Aubert, L., Konradova, D., Barris, S. & Quinet, M. Different drought resistance mechanisms between two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. Physiol. Plant. https://doi.org/10.1111/ppl.13248 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Sistla, S. A., Asao, S. & Schimel, J. P. Detecting microbial N-limitation in tussock tundra soil: Implications for Arctic soil organic carbon cycling. Soil Biol. Biochem. 55, 78–84. https://doi.org/10.1016/j.soilbio.2012.06.010 (2012).

    CAS 
    Article 

    Google Scholar 

  • Chkrebtii, O. A., Cameron, E. K., Campbell, D. A. & Bayne, E. M. Transdimensional approximate Bayesian computation for inference on invasive species models with latent variables of unknown dimension. Comput. Stat. Data Anal. 86, 97–110. https://doi.org/10.1016/j.csda.2015.01.002 (2015).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • Szlavecz, K. et al. Invasive earthworm species and nitrogen cycling in remnant forest patches. Appl. Soil. Ecol. 32, 54–62. https://doi.org/10.1016/j.apsoil.2005.01.006 (2006).

    Article 

    Google Scholar 

  • Liu, M., Cao, J. & Wang, C. Bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil. Ecotoxicol. Environ. Saf. 189, 109996 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lubbers, I. M. et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Change 3, 187–194. https://doi.org/10.1038/nclimate1692 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wang, Z., Chen, Z., Niu, Y., Ren, P. & Hao, M. Feasibility of vermicomposting for spent drilling fluid from a nature-gas industry employing earthworms Eisenia fetida. Ecotoxicol. Environ. Saf. 214, 111994 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Elyamine, A. M. & Hu, C. Earthworms and rice straw enhanced soil bacterial diversity and promoted the degradation of phenanthrene. Environ. Sci. Eur. 32, 124. https://doi.org/10.1186/s12302-020-00400-y (2020).

    CAS 
    Article 

    Google Scholar 

  • Sun, M. et al. Ecological role of earthworm intestinal bacteria in terrestrial environments: A review. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140008 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turp, G. A., Turp, S. M., Ozdemir, S. & Yetilmezsoy, K. Vermicomposting of biomass ash with bio-waste for solubilizing nutrients and its effect on nitrogen fixation in common beans. Environ. Technol. Innov. https://doi.org/10.1016/j.eti.2021.101691 (2021).

    Article 

    Google Scholar 

  • Lv, B., Zhang, D., Chen, Q. & Cui, Y. Effects of earthworms on nitrogen transformation and the correspond genes (amoA and nirS) in vermicomposting of sewage sludge and rice straw. Bioresour. Technol. 287, 121428. https://doi.org/10.1016/j.biortech.2019.121428 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sharma, K. & Garg, V. K. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour. Technol. 250, 708–715. https://doi.org/10.1016/j.biortech.2017.11.101 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Castillo Diaz, J. M., Martin-Laurent, F., Beguet, J., Nogales, R. & Romero, E. Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance. Sci. Total Environ. 579, 1111–1119. https://doi.org/10.1016/j.scitotenv.2016.11.082 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Samal, K., Raj Mohan, A., Chaudhary, N. & Moulick, S. Application of vermitechnology in waste management: A review on mechanism and performance. J. Environ. Chem. Eng. 7, 103392. https://doi.org/10.1016/j.jece.2019.103392 (2019).

    CAS 
    Article 

    Google Scholar 

  • Katakula, A. A. N., Handura, B., Gawanab, W., Itanna, F. & Mupambwa, H. A. Optimized vermicomposting of a goat manure-vegetable food waste mixture for enhanced nutrient release. Sci. Afr. 12, e00727 (2021).

    Google Scholar 

  • Cáceres, R., Malińska, K. & Marfà, O. Nitrification within composting: A review. Waste Manag. 72, 119–137. https://doi.org/10.1016/j.wasman.2017.10.049 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lv, B., Cui, Y., Wei, H., Chen, Q. & Zhang, D. Elucidating the role of earthworms in N2O emission and production pathway during vermicomposting of sewage sludge and rice straw. J. Hazard. Mater. 400, 123215 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, L. et al. The non-negligibility of greenhouse gas emission from a combined pre-composting and vermicomposting system with maize stover and cow dung. Environ. Sci. Pollut. Res. 28, 19412–19423 (2021).

    CAS 
    Article 

    Google Scholar 

  • Chen, C., Whalen, J. K. & Guo, X. Earthworms reduce soil nitrous oxide emissions during drying and rewetting cycles. Soil Biol. Biochem. 68, 117–124. https://doi.org/10.1016/j.soilbio.2013.09.020 (2014).

    CAS 
    Article 

    Google Scholar 

  • Wang, X. et al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage. Water Res. 77, 191–200. https://doi.org/10.1016/j.watres.2015.03.019 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yang, Z., Sun, H. & Wu, W. Intensified simultaneous nitrification and denitrification performance in integrated packed bed bioreactors using PHBV with different dosing methods. Environ. Sci. Pollut. Res. 27, 21560–21569. https://doi.org/10.1007/s11356-020-08290-6 (2020).

    CAS 
    Article 

    Google Scholar 

  • Pan, Z. et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process. Bioresour. Technol. 301, 122726. https://doi.org/10.1016/j.biortech.2019.122726 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Xia, L., Li, X., Fan, W. & Wang, J. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp .ND7 isolated from municipal activated sludge. Bioresour. Technol. 301, 122749. https://doi.org/10.1016/j.biortech.2020.122749 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dad, J. M. & Khan, A. B. Threatened medicinal plants of Gurez Valley, Kashmir Himalayas. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 7, 20–26. https://doi.org/10.1080/21513732.2011.602646 (2011).

    Article 

    Google Scholar 

  • Cameira, M. D. & Mota, M. Nitrogen related diffuse pollution from horticulture production—mitigation practices and assessment strategies. Horticulturae https://doi.org/10.3390/horticulturae3010025 (2017).

    Article 

    Google Scholar 

  • Yuvaraj, A., Thangaraj, R., Ravindran, B., Chang, S. W. & Karmegam, N. Centrality of cattle solid wastes in vermicomposting technology—A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environ. Pollut. 268, 115688. https://doi.org/10.1016/j.envpol.2020.115688 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5 (2000).

    CAS 
    Article 

    Google Scholar 

  • Bertrand, M. et al. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35, 553–567 (2015).

    CAS 
    Article 

    Google Scholar 

  • Makoto, K., Bryanin, S. V. & Takagi, K. The effect of snow reduction and Eisenia japonica earthworm traits on soil nitrogen dynamics in spring in a cool-temperate forest. Appl. Soil. Ecol. 144, 1–7. https://doi.org/10.1016/j.apsoil.2019.06.019 (2019).

    Article 

    Google Scholar 

  • Huang, K. et al. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes. Environ. Sci. Pollut. Res. Int. 23, 13569–13575. https://doi.org/10.1007/s11356-016-6848-1 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Makoto, K., Minamiya, Y. & Kaneko, N. Differences in soil type drive the intraspecific variation in the responses of an earthworm species and consequently, tree growth to warming. Plant Soil 404, 209–218. https://doi.org/10.1007/s11104-016-2827-z (2016).

    CAS 
    Article 

    Google Scholar 

  • Grenon, F., Bradley, R. L. & Titus, B. D. Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification: possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biol. Biochem. 36, 1465–1474. https://doi.org/10.1016/j.soilbio.2004.04.021 (2004).

    CAS 
    Article 

    Google Scholar 

  • Zhang, H., Li, J., Zhang, Y. & Huang, K. Quality of vermicompost and microbial community diversity affected by the contrasting temperature during vermicomposting of dewatered sludge. Int. J. Env. Res. Public Health 17, 1748 (2020).

    CAS 
    Article 

    Google Scholar 

  • Velasco-Velasco, J., Parkinson, R. & Kuri, V. Ammonia emissions during vermicomposting of sheep manure. Bioresour. Technol. 102, 10959–10964 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dan, X. et al. Effects of changing temperature on gross N transformation rates in acidic subtropical forest soils. Forests 10, 894 (2019).

    Article 

    Google Scholar 

  • Gusain, R. & Suthar, S. Vermicomposting of invasive weed Ageratum conyzoids: Assessment of nutrient mineralization, enzymatic activities, and microbial properties. Bioresour. Technol. 312, 123537 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Klaasen, H. L., Koopman, J. P., Poelma, F. G. & Beynen, A. C. Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev. 8, 165–180. https://doi.org/10.1111/j.1574-6968.1992.tb04986.x (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fischer, K., Hahn, D., Daniel, O., Zeyer, J. & Amann, R. I. In situ analysis of the bacterial community in the gut of the earthworm Lumbricus terrestris L. by whole-cell hybridization. Can. J. Microbiol. 41, 666–673. https://doi.org/10.1139/m95-092 (1995).

    CAS 
    Article 

    Google Scholar 

  • Karsten, G. R. & Drake, H. L. Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Appl. Environ. Microbiol. 61, 1039–1044. https://doi.org/10.1128/AEM.61.3.1039-1044.1995 (1995).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hobson, A. M., Frederickson, J. & Dise, N. B. CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manag. 25, 345–352. https://doi.org/10.1016/j.wasman.2005.02.015 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Singh, A. et al. Earthworms and vermicompost: An eco-friendly approach for repaying nature’s debt. Environ. Geochem. Health 42, 1617–1642 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zedelius, J. et al. Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol. Rep. 3, 125–135. https://doi.org/10.1111/j.1758-2229.2010.00198.x (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, R., Suter, H. C., He, J.-Z., Hayden, H. & Chen, D. Influence of temperature and moisture on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil. J. Soils Sed. https://doi.org/10.1007/s11368-015-1170-y (2015).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Composition of soil recalcitrant C regulates nitrification rates in acidic soils. Geoderma 337, 965–972. https://doi.org/10.1016/j.geoderma.2018.11.014 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhang, J., Sun, W., Zhong, W. & Cai, Z. The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils. Soil Biol. Biochem. 76, 143–148. https://doi.org/10.1016/j.soilbio.2014.05.001 (2014).

    CAS 
    Article 

    Google Scholar 

  • Abail, Z., Sampedro, L. & Whalen, J. K. Short-term carbon mineralization from endogeic earthworm casts as influenced by properties of the ingested soil material. Appl. Soil. Ecol. 116, 79–86 (2017).

    Article 

    Google Scholar 

  • Coq, S., Barthès, B. G., Oliver, R., Rabary, B. & Blanchart, E. Earthworm activity affects soil aggregation and organic matter dynamics according to the quality and localization of crop residues—an experimental study (Madagascar). Soil Biol. Biochem. 39, 2119–2128 (2007).

    CAS 
    Article 

    Google Scholar 

  • Medina-Sauza, R. M. et al. Earthworms building up soil microbiota, a review. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00081 (2019).

    Article 

    Google Scholar 

  • Aira, M., Monroy, F. & Domínguez, J. Ageing effects on nitrogen dynamics and enzyme activities in casts of Aporrectodea caliginosa (Lumbricidae). Pedobiologia 49, 467–473 (2005).

    CAS 
    Article 

    Google Scholar 

  • Clause, J., Barot, S., Richard, B., Decaëns, T. & Forey, E. The interactions between soil type and earthworm species determine the properties of earthworm casts. Appl. Soil. Ecol. 83, 149–158 (2014).

    Article 

    Google Scholar 

  • McDaniel, J. P., Stromberger, M. E., Barbarick, K. A. & Cranshaw, W. Survival of Aporrectodea caliginosa and its effects on nutrient availability in biosolids amended soil. Appl. Soil. Ecol. 71, 1–6 (2013).

    Article 

    Google Scholar 

  • Ravishankara, A., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lubbers, I., Brussaard, L., Otten, W. & Van Groenigen, J. Earthworm-induced N mineralization in fertilized grassland increases both N2O emission and crop-N uptake. Eur. J. Soil Sci. 62, 152–161 (2011).

    CAS 
    Article 

    Google Scholar 

  • Peter, S. D. J., George, G. B., Siu, M. T., Marcus, A. H. & Harold, L. D. Emission of nitrous oxide and dinitrogen by diverse earthworm families from Brazil and resolution of associated denitrifying and nitrate-dissimilating taxa. FEMS Microbiol. Ecol. 83, 375–391. https://doi.org/10.1111/j.1574-6941.2012.01476.x (2013).

    CAS 
    Article 

    Google Scholar 

  • Firestone, M. K. & Davidson, E. A. Microbiological basis of NO and N2O production and consumption in soil. Exch. Trace Gases terr. Ecosyst. Atmos. 47, 7–21 (1989).

    CAS 

    Google Scholar 

  • Zhu, X. et al. Exploring the relationships between soil fauna, different tillage regimes and CO2 and N2O emissions from black soil in China. Soil Biol. Biochem. 103, 106–116 (2016).

    CAS 
    Article 

    Google Scholar 

  • Yu, D.-S. et al. Simultaneous nitrogen and phosphorus removal characteristics of an anaerobic/aerobic operated spndpr system treating low C/N urban sewage. Huan Jing ke Xue Huanjing Kexue 39, 5065–5073 (2018).

    PubMed 

    Google Scholar 

  • Wang, F., Zhao, Y., Xie, S. & Li, J. Implication of nitrifying and denitrifying bacteria for nitrogen removal in a shallow lake. Clean: Soil, Air, Water 45, 1500319 (2017).

    Google Scholar 

  • Wang, J. et al. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure. Waste Manag. 34, 1546–1552. https://doi.org/10.1016/j.wasman.2014.04.010 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Nigussie, A., Kuyper, T. W., Bruun, S. & de Neergaard, A. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J. Clean. Prod. 139, 429–439. https://doi.org/10.1016/j.jclepro.2016.08.058 (2016).

    CAS 
    Article 

    Google Scholar 

  • Yang, F., Li, G., Zang, B. & Zhang, Z. The maturity and CH4, N2O, NH3 emissions from vermicomposting with agricultural waste. Compost Sci. Util. 25, 262–271. https://doi.org/10.1080/1065657X.2017.1329037 (2017).

    CAS 
    Article 

    Google Scholar 

  • Ma, L. et al. Soil properties alter plant and microbial communities to modulate denitrification rates in subtropical riparian wetlands. Land Degrad. Dev. 31, 1792–1802 (2020).

    Article 

    Google Scholar 

  • Xu, X. et al. Effective nitrogen removal in a granule-based partial-denitrification/anammox reactor treating low C/N sewage. Bioresour. Technol. 297, 122467 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ma, X., Xing, M., Wang, Y., Xu, Z. & Yang, J. Microbial enzyme and biomass responses: Deciphering the effects of earthworms and seasonal variation on treating excess sludge. J. Environ. Manag. 170, 207–214. https://doi.org/10.1016/j.jenvman.2016.01.022 (2016).

    CAS 
    Article 

    Google Scholar 

  • Kremen, A., Bear, J., Shavit, U. & Shaviv, A. Model demonstrating the potential for coupled nitrification denitrification in soil aggregates. Environ. Sci. Technol. 39, 4180–4188. https://doi.org/10.1021/es048304z (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhang, Y., Song, C., Zhou, Z., Cao, X. & Zhou, Y. Coupling between nitrification and denitrification as well as its effect on phosphorus release in sediments of Chinese Shallow Lakes. Water 11, 1809 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Das, D. & Deka, H. Vermicomposting of harvested waste biomass of potato crop employing Eisenia fetida: Changes in nutrient profile and assessment of the maturity of the end products. Environ. Sci. Pollut. Res. 28, 35717–35727 (2021).

    CAS 
    Article 

    Google Scholar 

  • Fernández-Gómez, M. J., Romero, E. & Nogales, R. Feasibility of vermicomposting for vegetable greenhouse waste recycling. Bioresour. Technol. 101, 9654–9660. https://doi.org/10.1016/j.biortech.2010.07.109 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Biruntha, M. et al. Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresour. Technol. 297, 122398 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Devi, C. & Khwairakpam, M. Feasibility of vermicomposting for the management of terrestrial weed Ageratum conyzoides using earthworm species Eisenia fetida. Environ. Technol. Innov. 18, 100696. https://doi.org/10.1016/j.eti.2020.100696 (2020).

    Article 

    Google Scholar 

  • Garg, P., Gupta, A. & Satya, S. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresour. Technol. 97, 391–395. https://doi.org/10.1016/j.biortech.2005.03.009 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Huang, K., Li, F., Wei, Y., Fu, X. & Chen, X. Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes. Bioresour. Technol. 170, 45–52. https://doi.org/10.1016/j.biortech.2014.07.058 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gusain, R. & Suthar, S. Vermicomposting of duckweed (Spirodela polyrhiza) by employing Eisenia fetida: Changes in nutrient contents, microbial enzyme activities and earthworm biodynamics. Bioresour. Technol. 311, 123585 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Karmegam, N. et al. Precomposting and green manure amendment for effective vermitransformation of hazardous coir industrial waste into enriched vermicompost. Bioresour. Technol. 319, 124136. https://doi.org/10.1016/j.biortech.2020.124136 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bhattacharya, S. S. & Chattopadhyay, G. N. Transformation of nitrogen during vermicomposting of fly ash. Waste Manag. Res. 22, 488–491. https://doi.org/10.1177/0734242X04048625 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hussain, N., Abbasi, T. & Abbasi, S. Transformation of the pernicious and toxic weed parthenium into an organic fertilizer by vermicomposting. Int. J. Environ. Stud. 73, 731–745 (2016).

    CAS 
    Article 

    Google Scholar 

  • Rai, R. & Suthar, S. Composting of toxic weed Parthenium hysterophorus: Nutrient changes, the fate of faecal coliforms, and biopesticide property assessment. Bioresour. Technol. 311, 123523 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Whalen, J. K., Parmelee, R. W. & Subler, S. Quantification of nitrogen excretion rates for three lumbricid earthworms using 15N. Biol. Fertil. Soils 32, 347–352. https://doi.org/10.1007/s003740000259 (2000).

    CAS 
    Article 

    Google Scholar 

  • Esmaeili, A., Khoram, M. R., Gholami, M. & Eslami, H. Pistachio waste management using combined composting-vermicomposting technique: Physico-chemical changes and worm growth analysis. J. Clean. Prod. 242, 118523 (2020).

    CAS 
    Article 

    Google Scholar 

  • Karmegam, N., Vijayan, P., Prakash, M. & Paul, J. A. J. Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. J. Clean. Prod. 228, 718–728 (2019).

    CAS 
    Article 

    Google Scholar 

  • Paul, J. A., Karmegam, N. & Daniel, T. Municipal solid waste (MSW) vermicomposting with an epigeic earthworm Perionyx ceylanensis Mich. Bioresour. Technol. 102, 6769–6773. https://doi.org/10.1016/j.biortech.2011.03.089 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Huang, K., Xia, H., Cui, G. & Li, F. Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes. Sci. Total Environ. 578, 337–345. https://doi.org/10.1016/j.scitotenv.2016.10.172 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mokgophi, M. M., Manyevere, A., Ayisi, K. K. & Munjonji, L. Characterisation of chamaecytisus tagasaste, moringa oleifera and vachellia karroo vermicomposts and their potential to improve soil fertility. Sustainability 12, 9305 (2020).

    CAS 
    Article 

    Google Scholar 

  • Pathma, J. & Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1, 26–26. https://doi.org/10.1186/2193-1801-1-26 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Villar, I., Alves, D., Pérez-Díaz, D. & Mato, S. Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge. Waste Manag. 48, 409–417 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, Y. et al. Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresour. Technol. 245, 411–418 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Svensson, B. H., Boström, U. & Klemedtson, L. Potential for higher rates of denitrification in earthworm casts than in the surrounding soil. Biol. Fertil. Soils 2, 147–149. https://doi.org/10.1007/BF00257593 (1986).

    Article 

    Google Scholar 

  • Syers, J. K. & Springett, J. A. Earthworms and Soil Fertility. In Biological Processes and Soil Fertility (eds Tinsley, J. & Darbyshire, J. F.) 93–104 (Springer Netherlands, Dordrecht, 1984).

    Chapter 

    Google Scholar 

  • Mohanty, S. R. et al. nitrification rates are affected by biogenic nitrate and volatile organic compounds in agricultural soils. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00772 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui, G. et al. Changes of quinolone resistance genes and their relations with microbial profiles during vermicomposting of municipal excess sludge. Sci. Total Environ. 644, 494–502 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Paliwal, R. & Julka, J. Checklist of earthworms of western Himalaya, India. Zoos’ Print J. 20, 1972–1976 (2005).

    Article 

    Google Scholar 

  • Gal, C., Frenzel, W. & Möller, J. Re-examination of the cadmium reduction method and optimisation of conditions for the determination of nitrate by flow injection analysis. Microchim. Acta 146, 155–164. https://doi.org/10.1007/s00604-004-0193-7 (2004).

    CAS 
    Article 

    Google Scholar 

  • Schmidt, L. W. in Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties (ed A.L. Page) 1027–1042 (1982).

  • Yoshinari, T., Hynes, R. & Knowles, R. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 9, 177–183. https://doi.org/10.1016/0038-0717(77)90072-4 (1977).

    CAS 
    Article 

    Google Scholar 

  • Parkin, T. B. Automated analysis of nitrous oxide. Soil Sci. Soc. Am. J. 49, 273 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hussain, M. et al. Bacteria in combination with fertilizers improve growth, productivity and net returns of wheat (Triticum aestivum L.). Pak. J. Agric. Sci. https://doi.org/10.21162/PAKJAS/16.4901 (2016).

    Article 

    Google Scholar 

  • Gislin, D., Sudarsanam, D., Antony Raj, G. & Baskar, K. Antibacterial activity of soil bacteria isolated from Kochi, India and their molecular identification. J Genet. Eng. Biotechnol. 16, 287–294. https://doi.org/10.1016/j.jgeb.2018.05.010 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rashid, K. M. H., Mohiuddin, M. & Rahman, M. Enumeration, isolation and identification of nitrogen-fixing bacterial strains at seedling stage in rhizosphere of rice grown in non-calcareous grey flood plain soil of Bangladesh. J. Fac. Environ. Sci. Technol. 13, 97 (2008).

    Google Scholar 

  • Williams, S. & Association of Official Analytical, C. Official methods of analysis of the Association of official analytical chemists. (Association of official analytical chemists, 1984).


  • Source: Ecology - nature.com

    Species- and site-specific circulating bacterial DNA in Subantarctic sentinel mussels Aulacomya atra and Mytilus platensis

    A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants