in

Decomposition stages as a clue for estimating the post-mortem interval in carcasses and providing accurate bird collision rates

  • Barrientos, R. et al. A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biol. Conserv. 222, 146–153 (2018).

    Google Scholar 

  • Stevens, B. S., Reese, K. P. & Connelly, J. W. Survival and detectability bias of avian fence collision surveys in sagebrush steppe. J. Wildl. Manag. 75, 437–449 (2011).

    Google Scholar 

  • Hunting, K. A Roadmap for PIER Research on Avian Collisions with Power Lines in California. (2002).

  • Barrientos, R. et al. Wire marking results in a small but significant reduction in avian mortality at power lines: A baci designed study. PLoS ONE 7, e32569 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costantini, D., Gustin, M., Ferrarini, A. & Dell’Omo, G. Estimates of avian collision with power lines and carcass disappearance across differing environments. Anim. Conserv. 20, 173–181 (2017).

    Google Scholar 

  • Jenkins, A. R. et al. Estimating the impacts of power line collisions on Ludwig’s Bustards Neotis ludwigii. Bird Conserv. Int. 21, 303–310 (2011).

    Google Scholar 

  • Shaw, J. M., Reid, T. A., Schutgens, M., Jenkins, A. R. & Ryan, P. G. High power line collision mortality of threatened bustards at a regional scale in the Karoo, South Africa. Ibis (Lond. 1859) 1859(160), 431–446 (2018).

    Google Scholar 

  • Gómez-Catasús, J. et al. Factors affecting differential underestimates of bird collision fatalities at electric lines: a case study in the Canary Islands. Ardeola 68, 71–94 (2021).

    Google Scholar 

  • Ponce, C., Alonso, J. C., Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim. Conserv. 13, 603–612 (2010).

    Google Scholar 

  • Bernardino, J. et al. Bird collisions with power lines: State of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).

    Google Scholar 

  • Brooks, J. W. & Sutton, L. in Veterinary Forensic Pathology (ed. Brooks, J. W.) 43–63 (2018). https://doi.org/10.1007/978-3-319-67172-7_4

  • Brooks, J. W. Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet. Pathol. 53, 929–940 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Ascensão, F. et al. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Glob. Ecol. Conserv. 19, e00661 (2019).

    Google Scholar 

  • Hau, T. C., Hamzah, N. H., Lian, H. H. & Amir Hamzah, S. P. A. Decomposition process and post mortem changes: Review. Sains Malaysiana 43, 1873–1882 (2014).

    Google Scholar 

  • Cooper, J. E. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 237–324 (CRC Press, 2013). https://doi.org/10.1201/b14553

  • Sutherland, A., Myburgh, J., Steyn, M. & Becker, P. J. The effect of body size on the rate of decomposition in a temperate region of South Africa. Forensic Sci. Int. 231, 257–262 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Valverde, I., Espín, S., María-Mojica, P. & García-Fernández, A. J. Protocol to classify the stages of carcass decomposition and estimate the time of death in small-size raptors. Eur. J. Wildl. Res. 66, 1–13 (2020).

    Google Scholar 

  • Goff, M. L. in Current Concepts in Forensic Entomology (eds. Amendt, J., Goff, M., Campobasso, C. & Grassberger, M.) 1–24 (Springer, 2010). https://doi.org/10.1007/978-1-4020-9684-6_1

  • Pittner, S. et al. A field study to evaluate PMI estimation methods for advanced decomposition stages. Int. J. Legal Med. 134, 1361–1373 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Probst, C. et al. Estimating the postmortem interval of wild boar carcasses. Vet. Sci. 7, 6 (2020).

    PubMed Central 

    Google Scholar 

  • Cambra-Moo, Ó., Delgado-Buscalioni, Á. & Delgado-Buscalioni, R. An approach to the study of variations in early stages of Gallus gallus decomposition. J. Taphon. 6, 21–40 (2008).

    Google Scholar 

  • Oates, D., Coggin, J., Hartman, F. & Hoilien, G. Guide to Time of Death in Selected Wildlife Species. (Nebraska Technical Series No. 14. Lincoln, N.E., Nebraska Game and Parks Commission, 1984).

  • Hewadikaram, K. A. & Goff, M. L. Effect of carcass size on rate of decomposition and arthropod succession patterns. Am. J. Forensic Med. Pathol. 12, 240–265 (1991).

    Google Scholar 

  • Zhou, C. & Byard, R. W. Factors and processes causing accelerated decomposition in human cadavers—An overview. J. Forensic Leg. Med. 18, 6–9 (2011).

    PubMed 

    Google Scholar 

  • Cockle, D. L. & Bell, L. S. Human decomposition and the reliability of a ‘Universal’ model for post mortem interval estimations. Forensic Sci. Int. 253(136), e1-136.e9 (2015).

    Google Scholar 

  • Azevedo, R. R. & Krüger, R. F. The influence of temperature and humidity on abundance and richness of Calliphoridae (Diptera). Iheringia. Série Zool. 103, 145–152 (2013).

    Google Scholar 

  • Barnes, K. M. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 149–160 (CRC Press, 2013).

  • Mann, R. W., Bass, W. M. & Meadows, L. Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J. Forensic Sci. 35, 103–111 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Gliksman, D. et al. Biotic degradation at night, abiotic degradation at day: Positive feedbacks on litter decomposition in drylands. Glob. Change Biol. 23, 1564–1574 (2017).

    ADS 

    Google Scholar 

  • Araujo, P. I., Grasso, A. A., González-Arzac, A., Méndez, M. S. & Austin, A. T. Sunlight and soil biota accelerate decomposition of crop residues in the Argentine Pampas. Agric. Ecosyst. Environ. 330, 107908 (2022).

    Google Scholar 

  • Fernández-Palacios, J. M. & Martín-Esquivel, J. L. Naturaleza de las Islas Canarias: Ecología y Conservación. (Turquesa, 2001).

  • Kenward, M. G. & Roger, J. H. An improved approximation to the precision of fixed effects from restricted maximum likelihood. Comput. Stat. Data Anal. 53, 2583–2595 (2009).

    MathSciNet 
    MATH 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org (2020).

  • Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Google Scholar 

  • Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).

    Google Scholar 

  • Halekoh, U. & Højsgaard, S. A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models-the R package pbkrtest. J. Stat. Softw. 59, 1–30 (2014).

    Google Scholar 

  • Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. (Sage, 2011).

  • Bartoń, K. MuMIn: Multi-Model Inference. (R Package Version 1.43.6, 2019).

  • De Rosario-Martinez, H., Fox, J. & R Core Team. Package ‘phia’ Title Post-Hoc Interaction Analysis. (R Package Version 0.2–1, 2015).

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 

  • Vass, A. Beyond the grave—Understanding human decomposition. Microbiol. Today 28, 190–192 (2001).

    Google Scholar 

  • Gill-King, H. in Forensic Taphonomy: The Postmortem Fate of Human Remains (eds. Haglund, W. D. & Sorg, M. H.) 93–104 (CRC Press, 1996). https://doi.org/10.1201/9781439821923.sec2

  • Campobasso, C. P., Di Vella, G. & Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 12, 18–27 (2001).

    Google Scholar 

  • Austin, A. T., Araujo, P. I. & Leva, P. E. Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology 90, 2642–2647 (2009).

    PubMed 

    Google Scholar 

  • Brandt, L. A., Bonnet, C. & King, J. Y. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J. Geophys. Res. Biogeosci. 114, G02004 (2009).

    ADS 

    Google Scholar 

  • Lee, H., Rahn, T. & Throop, H. An accounting of C-based trace gas release during abiotic plant litter degradation. Glob. Chang. Biol. 18, 1185–1195 (2012).

    ADS 

    Google Scholar 

  • Zepp, R. G., Erickson, D. J., Paul, N. D. & Sulzberger, B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem. Photobiol. Sci. 6, 286–300 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Archer, M. S. Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci. Justice J. Forensic Sci. Soc. 44, 35–41 (2004).

  • Simmons, T., Adlam, R. E. & Moffatt, C. Debugging decomposition data—Comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J. Forensic Sci. 55, 8–13 (2010).

    PubMed 

    Google Scholar 

  • Spicka, A., Johnson, R., Bushing, J., Higley, L. G. & Carter, D. O. Carcass mass can influence rate of decomposition and release of ninhydrin-reactive nitrogen into gravesoil. Forensic Sci. Int. 209, 80–85 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Tracqui. in Encyclopaedia of Forensic Sciences (eds. Siegel, J. A., Saukko, P. J. & Max, M. H.) 1357–1363 (Academic Press, 2000).

  • Riding, C. S. & Loss, S. R. Factors influencing experimental estimation of scavenger removal and observer detection in bird–window collision surveys. Ecol. Appl. 28, 2119–2129 (2018).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Hardship at birth alters the impact of climate change on a long-lived predator

    A deeper understanding of system interactions can explain contradictory field results on pesticide impact on honey bees