Swank, W. T., Waide, J. B., Crossley, D. A. & Todd, R. L. Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51, 297–299 (1981).
Google Scholar
Hunter, M. D. Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric. For. Entomol. 3, 77–84 (2001).
Google Scholar
Metcalfe, D. B. et al. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol. Lett. 17, 324–332 (2014).
Google Scholar
Metcalfe, D. B., Crutsinger, G. M., Kumordzi, B. B. & Wardle, D. A. Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest. Ecology 97, 124–132 (2016).
Google Scholar
Lovett, G. M. et al. Insect defoliation and nitrogen cycling in forests. Bioscience 52, 335 (2002).
Google Scholar
Frost, C. J. & Hunter, M. D. Recycling of nitrogen in herbivore feces: Plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia 151, 42–53 (2007).
Google Scholar
Le Mellec, A. & Michalzik, B. Impact of a pine lappet (Dendrolimus pini) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany. Can. J. Res. 38, 1829–1841 (2008).
Google Scholar
Grüning, M. M., Simon, J., Rennenberg, H. & L-M-Arnold, A. Defoliating insect mass outbreak affects soil N fluxes and tree N nutrition in scots pine forests. Front. Plant Sci. 8, 954 (2017).
Mikola, J., Yeates, G. W., Barker, G. M., Wardle, D. A. & Bonner, K. I. Effects of defoliation intensity on soil food-web properties in an experimental grassland community. Oikos 92, 333–343 (2001).
Google Scholar
Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G. & Koch, G. W. Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84, 2867–2876 (2003).
Google Scholar
Pitman, R. M., Vanguelova, E. I. & Benham, S. E. The effects of phytophagous insects on water and soil nutrient concentrations and fluxes through forest stands of the Level II monitoring network in the UK. Sci. Total Environ. 409, 169–181 (2010).
Google Scholar
Kaukonen, M. et al. Moth herbivory enhances resource turnover in subarctic mountain birch forests? Ecology 94, 267–272 (2013).
Google Scholar
Weintraub, M. Biological phosphorus cycling in arctic and alpine soils. In Phosphorus in Action (eds. Bünemann E., Oberson, A. & Frossard, E.) Vol. 26, p. 295–316 (Springer, 2011).
Högberg, P., Näsholm, T., Franklin, O. & Högberg, M. N. Tamm review: on the nature of the nitrogen limitation to plant growth in fennoscandian boreal forests. Ecol. Manag. 403, 161–185 (2017).
Google Scholar
Maynard, D. G. et al. How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environ. Rev. 22, 161–178 (2014).
Google Scholar
Wan, S., Hui, D. & Luo, Y. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a Meta-Analysis. Ecol. Appl. 11, 1349–1365 (2001).
Google Scholar
Hart, S. A. & Chen, H. Y. H. Understory vegetation dynamics of North American boreal forests. CRC Crit. Rev. Plant Sci. 25, 381–397 (2006).
Google Scholar
Martineau, C., Beguin, J., Séguin, A. & Paré, D. Cumulative effects of disturbances on soil nutrients: predominance of antagonistic short-term responses to the salvage logging of insect-killed stands. Ecosystems 23, 812–827 (2020).
Google Scholar
Coulombe, D., Sirois, L. & Paré, D. Effect of harvest gap formation and thinning on soil nitrogen cycling at the boreal–temperate interface. Can. J. Res. 47, 308–318 (2017).
Google Scholar
Grenon, F., Bradley, R. L. & Titus, B. D. Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification: Possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biol. Biochem. 36, 1465–1474 (2004).
Google Scholar
Guntiñas, M. E., Leirós, M. C., Trasar-Cepeda, C. & Gil-Sotres, F. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. Eur. J. Soil Biol. 48, 73–80 (2012).
Google Scholar
Houle, D., Duchesne, L. & Boutin, R. Effects of a spruce budworm outbreak on element export below the rooting zone: a case study for a balsam fir forest. Ann. Sci. 66, 707–707 (2009).
Google Scholar
Griffin, J. M. & Turner, M. G. Changes to the N cycle following bark beetle outbreaks in two contrasting conifer forest types. Oecologia 170, 551–565 (2012).
Google Scholar
Orwig, D. A., Cobb, R. C., D’Amato, A. W., Kizlinski, M. L. & Foster, D. R. Multi-year ecosystem response to hemlock woolly adelgid infestation in southern New England forests. Can. J. Res. 38, 834–843 (2008).
Google Scholar
McMillin, J. D. & Wagner, M. R. Chronic defoliation impacts pine sawfly (Hymenoptera: Diprionidae) performance and host plant quality. Oikos 79, 357 (1997).
Google Scholar
Pureswaran, D. S., Johns, R., Heard, S. B. & Quiring, D. Paradigms in eastern spruce budworm (Lepidoptera: Tortricidae) population ecology: a century of debate. Environ. Entomol. 45, 1333–1342 (2016).
Google Scholar
Vidal, M. C. & Murphy, S. M. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol. Lett. 21, 138–150 (2018).
Google Scholar
White, T. C. R. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63, 90–105 (1984).
Google Scholar
White, T. C. R. An alternative hypothesis explains outbreaks of conifer-feeding budworms of the genus Choristoneura (Lepidoptera: Tortricidae) in Canada. J. Appl. Entomol. 142, 725–730 (2018).
Google Scholar
Bouchard, M., Régnière, J. & Therrien, P. Bottom-up factors contribute to large-scale synchrony in spruce budworm populations1. Can. J. Res. 48, 277–284 (2018).
Google Scholar
I-M-Arnold, A. et al. Forest defoliator pests alter carbon and nitrogen cycles. R. Soc. Open Sci. 3, 1–7 (2016).
Pureswaran, D. S. et al. Climate-induced changes in host tree–insect phenology may drive ecological state-shift in boreal forests. Ecology 96, 1480–1491 (2015).
Google Scholar
MFFP (Ministère des Forêts de la Faune et des Parcs). Aires infestées par la tordeuse des bourgeons de l’épinette au Québec en 2019 – Version 1.1. (2019).
Forkner, R. E. & Hunter, M. D. What goes up must come down? Nutrient addition and predation pressure on oak herbivores. Ecology 81, 1588–1600 (2000).
Google Scholar
Schlesinger, W. H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 154, 427–432 (2021).
Google Scholar
Kristensen, J. A., Metcalfe, D. B. & Rousk, J. The biogeochemical consequences of litter transformation by insect herbivory in the Subarctic: a microcosm simulation experiment. Biogeochemistry 138, 323–336 (2018).
Google Scholar
Kagata, H. & Ohgushi, T. Ecosystem consequences of selective feeding of an insect herbivore: Palatability-decomposability relationship revisited. Ecol. Entomol. 36, 768–775 (2011).
Google Scholar
Kagata, H. & Ohgushi, T. Positive and negative impacts of insect frass quality on soil nitrogen availability and plant growth. Popul. Ecol. 54, 75–82 (2012).
Google Scholar
Weihrauch, D. & O’Donnell, M. J. Mechanisms of nitrogen excretion in insects. Curr. Opin. Insect Sci. 47, 25–30 (2021).
Google Scholar
Choudhury, D. Herbivore induced changes in leaf-litter resource quality: a neglected aspect of herbivory in ecosystem nutrient dynamics. Oikos 51, 389–393 (1988).
Google Scholar
Régnière, J. & You, M. A simulation model of spruce budworm (Lepidoptera: Tortricidae) feeding on balsam fir and white spruce. Ecol. Modell. 54, 277–297 (1991).
Google Scholar
Balducci, L. et al. The paradox of defoliation: declining tree water status with increasing soil water content. Agric. Meteorol. 290, 108025 (2020).
Google Scholar
Conant, R. T. et al. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).
Google Scholar
Doran, O., MacLean, D. A. & Kershaw, J. A. Needle longevity of balsam fir is increased by defoliation by spruce budworm. Trees – Struct. Funct. 31, 1933–1944 (2017).
Google Scholar
Wu, Y., Maclean, D. A., Hennigar, C. & Taylor, A. R. Interactions among defoliation level, species, and soil richness determine foliage production during and after simulated spruce budworm attack. Can. J. Res. 50, 565–580 (2020).
Google Scholar
Fierravanti, A., Rossi, S., Kneeshaw, D., De Grandpré, L. & Deslauriers, A. Low non-structural carbon accumulation in spring reduces growth and increases mortality in conifers defoliated by spruce budworm. Front. Glob. Change 2, 1–13 (2019).
Google Scholar
Hennigar, C. R., MacLean, D. A., Quiring, D. T. & Kershaw, J. A. Differences in spruce budworm defoliation among balsam fir and white, red, and black spruce. For. Sci. 54, 158–166 (2008).
Bognounou, F., De Grandpré, L., Pureswaran, D. S. & Kneeshaw, D. Temporal variation in plant neighborhood effects on the defoliation of primary and secondary hosts by an insect pest. Ecosphere 8, e01759 (2017).
Google Scholar
Li, F. et al. Responses of tree and insect herbivores to elevated nitrogen inputs: a meta-analysis. Acta Oecologica 77, 160–167 (2016).
Google Scholar
Shaw, G. G., Little, C. H. A. & Durzan, D. J. Effect of fertilization of balsam fir trees on spruce budworm nutrition and development. Can. J. Res. 8, 364–374 (1978).
Google Scholar
Mattson, W. J., Haack, R. A., Lawrence, R. K. & Slocum, S. S. Considering the nutritional ecology of the spruce budworm in its management. Ecol. Manag. 39, 183–210 (1991).
Google Scholar
Metcalfe, D. B. et al. Ecological stoichiometry and nutrient partitioning in two insect herbivores responsible for large-scale forest disturbance in the Fennoscandian subarctic. Ecol. Entomol. 44, 118–128 (2019).
Google Scholar
Kaitaniemi, P., Ruohomäki, K., Ossipov, V., Haukioja, E. & Pihlaja, K. Delayed induced changes in the biochemical composition of host plant leaves during an insect outbreak. Oecologia 116, 182–190 (1998).
Google Scholar
Fuentealba, A. & Bauce, É. Interspecific variation in resistance of two host tree species to spruce budworm. Acta Oecol. 70, 10–20 (2016).
Google Scholar
Nealis, V. G. & Régnière, J. Insect – host relationships influencing disturbance by the spruce budworm in a boreal mixedwood forest. Can. J. Res. 1882, 1870–1882 (2004).
Google Scholar
Greenbank, D. O. Staminate flowers and the spruce budworm. Mem. Entomol. Soc. Can. 95, 202–218 (1963).
Google Scholar
Sturtevant, B. R., Cooke, B. J., Kneeshaw, D. D. & MacLean, D. A. Modeling insect disturbance across forested landscapes: insights from the spruce budworm. in Simulation Modeling Of Forest Landscape Disturbances. 93–134 (Springer, 2015).
Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47, 361–393 (2002).
Google Scholar
Despland, E. Effects of phenological synchronization on caterpillar early-instar survival under a changing climate1. Can. J. Res. 48, 247–254 (2018).
Google Scholar
Mattson, W. J. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).
Google Scholar
Greenbank, D. O. The role of climate and dispersal in the initiation of the spruce budworm outbreak in New Brunswick: II. The role of dispersal. Can. J. Zool. 35, 385–403 (1957).
Google Scholar
Boulanger, Y. et al. The use of weather surveillance radar and high-resolution three dimensional weather data to monitor a spruce budworm mass exodus flight. Agric. Meteorol. 234–235, 127–135 (2017).
Google Scholar
Landry, J. S. & Parrott, L. Could the lateral transfer of nutrients by outbreaking insects lead to consequential landscape-scale effects? Ecosphere 7, e01265 (2016).
Google Scholar
Andersen, T., Elser, J. J. & Hessen, D. O. Stoichiometry and population dynamics. Ecol. Lett. 7, 884–900 (2004).
Google Scholar
Environment Canada. Canadian climate normals: 1981-2010 Climate normals and averages. (2015). Available at: http://climate.weather.gc.ca/climate_normals/index_e.html. (Accessed: 5 April 2016).
De Grandpré, L., Morissette, J. & Gauthier, S. Long-term post-fire changes in the northeastern boreal forest of Quebec. J. Veg. Sci. 11, 791–800 (2000).
Gauthier, S., Boucher, D., Morissette, J. & De Grandpré, L. Fifty-seven years of composition change in the eastern boreal forest of Canada. J. Veg. Sci. 21, 772–785 (2010).
Bouchard, M. & Pothier, D. Spatiotemporal variability in tree and stand mortality caused by spruce budworm outbreaks in eastern Quebec. Can. J. Res. 40, 86–94 (2010).
Google Scholar
Fettes, J. J. Investigations of sampling techniques for population studies of the spruce budworm on balsam fir in Ontario (Forest Insect Laboratory, 1950).
Miller, R. O. High-Temperature oxidation: dry ashing. In Handbook of Reference Methods for Plant Analysis (ed. Karla, Y. P.) 53–56 (CRC Press, Taylor & Francis Group, 1998).
Trottier-Picard, A. et al. Amounts of logging residues affect planting microsites: a manipulative study across northern forest ecosystems. Ecol. Manag. 312, 203–215 (2014).
Google Scholar
RCoreTeam. R.: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & RCoreTeam. _nlme: Linear and Nonlinear Mixed Effects Models_. (2020).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.0. (2021).
Source: Ecology - nature.com