Poff, N. L. et al. The natural flow regime: A new paradigm for riverine conservation and restoration. Bioscience 47, 769–784 (1997).
Google Scholar
Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30(4), 492–507 (2002).
Google Scholar
Olden, J. D. et al. Are large-scale flow experiments informing the science and management of freshwater ecosystems?. Front. Ecol. Environ. 12, 176–185 (2014).
Google Scholar
Poff, N. L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 63, 1011–1021 (2018).
Google Scholar
Acreman, M. Ethical aspects of water and ecosystems. Water Policy 3, 257–265 (2001).
Google Scholar
Olden, J. D. & Naiman, R. J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 55, 86–107 (2010).
Google Scholar
Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flow. Freshw. Biol. 55, 194–205 (2010).
Google Scholar
Richter, B. D. & Thomas, G. A. Restoring environmental flows by modifying dam operations. Ecol. Soc. 12(1), 12 (2007).
Google Scholar
Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19, 397–441 (2003).
Google Scholar
Vӧrӧsmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 468, 334–334 (2010).
Google Scholar
Acreman, M. C. & Ferguson, A. J. D. Environmental flows and the European water framework directive. Freshw. Biol. 55, 32–48 (2010).
Google Scholar
Poff, N. L. & Matthews, J. H. Environmental flows in the Anthropocence: Past progress and future prospects. Curr. Opin. Environ. Sustain. 5, 667–675 (2003).
Google Scholar
Theodoropoulos, C. & Skoulikidis, N. Environmental flows: The European approach through the Water Framework Directive 2000/60/EC. In Proceedings of the 10th International Congress of the Hellenic Geographical Society 1140–1152 (2015).
The Brisbane Declaration. Environmental flows are essential for freshwater ecosystem health and human well-being. In Declaration of the 10th International River Symposium 3–6 (Brisbane, Australia, 2007).
Arthington, A. H. et al. The brisbane declaration and global action agenda on environmental flows. Front. Environ. Sci. 6, 45 (2018).
Google Scholar
European Commission. Ecological flows in the implementation of the Water Framework Directive. WFD CIS Guidance Document No. 31 (2015).
Hirzel, A. H. & Le Lay, G. Habitat suitability modelling and niche theory. J. Appl. Ecol. 45, 1372–1381 (2008).
Google Scholar
Soberon, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115–1123 (2007).
Google Scholar
Ahmadi-Nedushan, B. et al. A review on statistical methods for the evaluation of the aquatic habitat suitability for instream flow assessment. River Res. Applic. 22, 503–523 (2006).
Google Scholar
Dolédec, S., Lamouroux, N., Fuchs, U. & Mérigoux, S. Modelling the hydraulic preferences of benthic macroinvertebrates in small European stream. Freshw. Biol. 52, 145–164 (2007).
Google Scholar
Katopodis, C. Case studies of instream flow modelling for fish habitat in Canadian Prairie Rivers. Can. Water Resour. J. 28, 199–216 (2003).
Google Scholar
Parasiewicz, P. Application of MesoHABSIM and target fish community approaches to restoration of the Quinebaug River, Connecticut and Massachusetts, U.S.A. River. Res. Appl. 24, 459–471 (2008).
Google Scholar
Piniweski, M. et al. Estimation of environmental flows in semi-natural lowland rivers – the Narew basin case study. Pol. J. Environ. Stud. 20(5), 1281–1293 (2011).
Theodoropoulos, C., Vourka, A., Skoulikidis, N., Rutschmann, P. & Stamou, A. Evaluating the performance of habitat models for predicting the environmental flow requirements of benthic macroinvertebrates. J. Ecohydraul. 3(1), 30–44 (2018).
Google Scholar
Yi, Y. et al. Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models. Renew. Sustain. Energy Rev. 68, 748–762 (2017).
Google Scholar
Theodoropoulos, C., Skoulikidis, N., Rutschmann, P. & Stamou, A. Ecosystem-based environmental flow assessment in a Greek regulated river with the use of 2D hydrodynamic habitat modelling. River Res. Appl. 34(6), 538–547 (2018).
Google Scholar
Huryn, A. D. & Wallace, J. B. Life history and production of stream insects. Annu. Rev. Entomol. 45(1), 83–110 (2000).
Google Scholar
Wallace, J. B. & Webster, J. R. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 41, 115–139 (1996).
Google Scholar
Cummins, K. W. Structure and function of stream ecosystems. Bioscience 24, 631–641 (1974).
Google Scholar
Covich, A. P., Palmer, M. A. & Crowl, T. A. The role of benthic invertebrates species in freshwater ecosystems. Bioscience 49(2), 119–127 (1999).
Google Scholar
Dolédec, S., Statzner, B. & Bournaud, M. Species traits for future biomonitoring across ecoregions: Patterns along a human-impacted river. Freshw. Biol. 42, 737–758 (1999).
Google Scholar
Marzin, N. et al. Ecological assessment of running waters: Do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures?. Ecol. Ind. 23, 56–65 (2012).
Google Scholar
Statzner, B., Bady, P., Dolédec, S. & Schöll, F. Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of trait patterns in least impacted river reaches. Freshw. Biol. 50, 2136–2161 (2005).
Google Scholar
Jowett, I. G. Hydraulic constraints on habitat suitability for benthic invertebrates in gravel-bed rivers. River Res. Appl. 19, 495–507 (2003).
Google Scholar
Dewson, Z. S., James, A. B. W. & Death, R. G. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J. North Am. Benthol. Soc. 26, 401–415 (2007).
Google Scholar
Wood, P. J. & Armitage, P. D. Biological effects of fine sediment in the lotic environment. Environ. Manage. 21(2), 203–217 (1997).
Google Scholar
Rolls, R. J., Leigh, C. & Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 31, 1163–1186 (2012).
Google Scholar
Graeber, D., Pusch, M. T., Lorenz, S. & Brauns, M. Cascading effects of flow reduction on the benthic invertebrate community in a lowland river. Hydrobiologia 717, 147–159 (2013).
Google Scholar
González, J. M., Recuerda, M. & Elosegi, A. Crowded waters: short-term response of invertebrate drift to water abstraction. Hydrobiologia 819, 39–51 (2018).
Google Scholar
Jowett, I. G., Richardson, J., Biggs, B. J. F., Hickey, C. W. & Quinn, J. M. Microhabitat preferences of benthic invertebrates and the development of generalised Deleatidium spp habitat suitability curves, applied to four New Zealand rivers. N. Z. J. Mar. Freshw. Res. 25(2), 187–199 (1991).
Google Scholar
Lamouroux, N. et al. The generality of abundance-environment relationships in microhabitats: A comment on Lancaster and Downes (2009). River Res. Appl. 26, 915–920 (2010).
Google Scholar
Mérigoux, S. & Dolédec, S. Hydraulic requirements of stream communities: A case study on invertebrates. Freshw. Biol. 49, 600–613 (2004).
Google Scholar
Lancaster, J. & Downes, B. J. Linking the hydraulic world of individual organisms to ecological processes: Putting ecology into ecohydraulics. River Res. Appl. 26, 385–403 (2009).
Google Scholar
Lancaster, J. & Hildrew, A. G. Flow refugia and the microdistribution of lotic macroinvertebrates. J. N. Am. Benthol. Soc. 12(4), 385–393 (1993).
Google Scholar
Chen, W. & Olden, J. D. Evaluating transferability of flow–ecology relationships across space, time and taxonomy. Freshw. Biol. 63, 817–830 (2017).
Google Scholar
Li, F., Cai, Q., Fu, X. & Liu, J. Construction of habitat suitability models (HSMs) for benthic macroinvertebrate and their applications to instream environmental flows: A case study in Xiangxi River of Three Gorges Reservior region China. Prog. Nat. Sci. 19, 359–367 (2009).
Google Scholar
Growns, I. O. & Davis, J. A. Longitudinal changes in near-bed flows and macroinvertebrate communities in a western Australian stream. J. North Am. Benthol. Soc. 13, 417–438 (1994).
Google Scholar
Shearer, K. A., Hayes, J. W., Jowett, I. G. & Olsen, D. A. Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. N. Z. J. Mar. Freshw. Res. 49, 178–191 (2015).
Google Scholar
Bovee, K. D. et al. Stream Habitat Analysis using the Instream Flow Incremental Methodology. USGS Inf. Technol. Rep. 1998–0004, 1–130 (1998).
Conallin, J., Boegh, E. & Jensen, J. K. Instream physical habitat modelling types: An analysis as stream hydromorphological modelling tools for EU water resource managers. Int. J. River Basin Manag. 8, 93–107 (2010).
Google Scholar
Poff, N. L., Tharme, R. E. & Arthington, A. H. Evolution of environmental flows assessment science, principles, and methodologies. In Water for the Environment: Policy, Science, and Integrated Management (eds Horne, A. et al.) 203–236 (Elsevier Press, Amsterdam, 2017).
Google Scholar
Bovee, K.D. Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. Washington (DC): USDI Fish and Wildlife Service. Instream Flow Information Paper #21 FWS/OBS-86/7.Geological Survey, Biological Resources Division, Mid-Continent Ecological Science Centre, Fort Collins, Colorado (1986).
Vismara, R., Azzellino, A., Bosi, R., Crosa, G. & Gentili, G. Preference curves for brown trout (Salmo trutta fario L.) in the River Adda, Northern Italy: comparing univariate and multivariate approaches. Regul. River 17, 37–50 (2001).
Google Scholar
Nestler, J. M., Milhous, R. T., Payne, T. R. & Smith, D. L. History and review of the habitat suitability criteria curve in applied aquatic ecology. River Res. Appl. 35, 1155–1180 (2019).
Google Scholar
Theodoropoulos, C., Skoulikidis, N., Stamou, A. & Dimitriou, E. Spatiotemporal variation in benthic-invertebrates-based physical Habitat modelling: Can we use generic instead of local and season-specific habitat suitability criteria?. Water 10, 1508 (2018).
Google Scholar
Gąbka, M., Jakubas, E., Janiak, T. & Golski, J. Rzeki Wełna i Flinta – charakterystyka obiektów badań, ich położenie i granice zlewni. In Koncepcja lasu Modelowego w Zarządzaniu i Ochronie Różnorodności Biologicznej rzek Wełny i Flinty(Wielkopolska (eds Batora, J. et al.) 21–30 (Bogucki Wydawnictwo Naukowe, Poznań, 2014).
Bartkowski, T. Rozwój polodowcowej sieci hydrograficznej w Wielkopolsce Środkowej (Zeszyty Naukowe UAM 8, 1957).
Paluch, J. Wpływ działalności spółek wodnych istniejących w XIX i na początku wieku XX na terenie zlewni rzeki Wełny na stan jej hydrografii i stosunków wodnych. In Proceedings of the conference “Ecological problems of the Vełna River basin – status and directions of measures 2–26 (Wągrowiec, 2009).
Jakubas, E. et al. Ocena stanu ekologicznego i zmian hydromorfologicznych rzek Wełny i Flinty. In Koncepcja lasu Modelowego w Zarządzaniu i Ochronie Różnorodności Biologicznej rzek Wełny i Flinty (Wielkopolska) (eds Batora, J. et al.) 141–150 (Bogucki Wydawnictwo Naukowe, Poznań, 2014).
Szoszkiewicz, K. et al. Podręcznik oceny wód płynących w oparciu o Hydromorfologiczny Indeks Rzeczny (Inspekcja Ochrony Środowiska, Biblioteka Monitoringu Środowiska, 2017).
Emery, J. C. et al. Classifying the hydraulic performance of riffle–pool bedforms for habitat assessment and river rehabilitation design. River Res. Appl. 19, 533–549 (2003).
Google Scholar
Mueller, M., Pander, J. & Geist, J. Taxonomic sufficiency in freshwater ecosystems: Effects of taxonomic resolution, functional traits, and data transformation. Freshw. Sci. 32(3), 762–778 (2013).
Google Scholar
Schmidt-Kloiber, A., Graf, W., Lorenz, A. & Moog, O. The AQEM/STAR taxalist – a pan-European macro-invertebrate ecological database and taxa inventory. Hydrobiologia 566, 325–342 (2006).
Google Scholar
Clarke, K. R. & Warwick, R. M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation 2nd edn. (Plymout, PRIMER-E (Plymouth Marine Laboratory, 2001).
Vimos-Lojano, D., Hampel, H., Vázquez, R. F. & Martínez-Capel, F. Community structure and functional feeding groups of macroinvertebrates in pristine Andean streams under different vegetation cover. Ecohydrol. Hydrobiol. 20(3), 357–368 (2020).
Google Scholar
Clarke, K. & Gorley, R. PRIMER v6: User Manual/Tutorial (Plymouth Marine Laboratory, Plymouth, 2006).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (https://www.R-project.org/, 2020)
Oksanen, F. J., et al. Vegan: Community Ecology Package. R package Version 2.4–3. (https://CRAN.R-project.org/package=vegan, 2017)
Jowett, I.G., Hayes, J.W. & Duncan, M.J. A guide to instream habitat survey methods and analysis. NIWA Science and Technology Series No. 54 (2008).
Manly, B. F. J., McDonald, L. L. & Thomas, D. L. Resource Selection by Animals (Chapman and Hall, London, 1993).
Google Scholar
Bis, B. & Mikulec, A. Przewodnik do oceny stanu ekologicznego rzek na podstawie makrobezkręgowców bentosowych (Biblioteka Monitoringu Środowiska, 2013).
Grygoruk, M. et al. Revealing the influence of hyporheic water exchange on the composition and abundance of bottom-dwelling macroinvertebrates in a temperate lowland river. Knowl. Manag. Aquat. Ecosyst. 442, 37. https://doi.org/10.1051/kmae/2021036 (2021).
Google Scholar
Degani, G. et al. Relationships between current velocity, depth and the invertebrate community in a stable river system. Hydrobiologia 263, 163–172 (1993).
Google Scholar
Lamberti, G. A., Entrekin, S. A., Griffiths, N. & Tiegs, S. Coarse Particulate Organic Matter: Storage, Transport, and Retention. In Methods Ecosystem Function Vol. 2 (eds Lamberti, G. A. & Hauer, F. R.) 55–69 (Elsevier Academic Press, Amsterdam, 2017).
Bell, N., Riis, T., Suren, A. M. & Baattrup-Pedersen, A. Distribution of invertebrates within beds of two morphologically contrasting stream macrophyte species. Fundam. Appl. Limnol. 183(4), 309–321 (2013).
Google Scholar
Wolters, J., Verdonschot, R. C. M., Schoelynck, J., Verdonschot, P. F. M. & Meire, P. The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream. Hydrobiologia 806, 157–173 (2018).
Google Scholar
Gore, J. A. & Nestler, J. M. Instream flow studies in perspective. Regul. Rivers Res. Manage. 2, 93–101 (1988).
Google Scholar
Hudson, H. R., Byrom, A. E. & Chadderton, W. L. A Critique of IFIM —Instream Habitat Simulation in the New Zealand Context (Department of Conservation, 2003).
Stamou, A. et al. Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach. J. Environ. Manage. 209, 273–285 (2018).
Google Scholar
Wright, J. F., Blackburn, J. H., Clarke, R. T. & Furse, M. T. Macroinvertebrate-habitat associations in lowland rivers and their relevance to conservations. Int. Ver. Theor. Angew. Limnol. Verh. 25, 1515–1518 (1994).
Leszczyńska, J., Głowacki, Ł & Grzybkowska, M. Factors shaping species richness and biodiversity of riverine macroinvertebrate assemblages at the local and regional scale. Community Ecol. 18(3), 227–236 (2017).
Google Scholar
Gore, J. A., Crawford, D. J. & Addison, D. S. An analysis of artificial riffles and enhancement of benthic community diversity by Physical Habitat Simulation (PHABSIM) and direct observation. Regul. Rivers Res. Manage. 14(1), 69–77 (1998).
Google Scholar
Anderson, N. H. & Sedell, J. R. Detritus processing by macroinvertebrates in stream ecosystems. Ann. Rev. Entomol. 24, 351–377 (1979).
Google Scholar
Dunbar, M. J. et al. River discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. Freshw. Biol. 55, 226–242 (2010).
Google Scholar
Acreman, M. et al. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 12(8), 466–473 (2014).
Google Scholar
Jourdan, J. et al. Effects of changing climate on European stream invertebrate communities: a long-term data analysis. Sci. Total Environ. 621, 588–599 (2018).
Google Scholar
Sarremejane, R. et al. Climate-driven hydrological variability determines inter-annual changes in stream invertebrate community assembly. Oikos 127, 1586–1595 (2018).
Google Scholar
Floury, M., Usseglio-Polatera, P., Ferreol, M., Delattre, C. & Souchon, Y. Global climate change in large European rivers: Long-term effects on macroinvertebrate communities and potential local confounding factors. Glob. Change Biol. 19, 1085–1099 (2013).
Google Scholar
Domisch, S., Jähnig, S. C. & Haase, P. Climate-change winners and losers: Stream macroinvertebrates of a submontane region in Central Europe. Freshw. Biol. 56, 2009–2020 (2011).
Google Scholar
Source: Ecology - nature.com