in

Development of microsatellites markers for the deep coral Madracis myriaster (Pocilloporidae: Anthozoa)

[adace-ad id="91168"]
  • Brooke, S. & Young, C. M. In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 397, 153–161 (2009).

    ADS 

    Google Scholar 

  • Reyes, J., Santodomingo, N. & Florez, P. Corales Escleractinios de Colombia. (Invemar Serie de Publicaciones Especiales, 2010).

  • Alonso, D. et al. Behind the scenes for the designation of the Corales de Profundidad national natural park of Colombia. Front. Mar. Sci. 8, 1147 (2021).

    Google Scholar 

  • Hughes, J. A., Menot, L. & Levin, L. Habitat classification and mapping on deep continental margins. Research and Consultancy Report, No 54. COMARGE Workshop (2008).

  • Rogers, A. The biology, ecology and vulnerability of deep-water coral reefs. International Union for Conservation of Nature and Natural Resources (2004).

  • Maier, C., Hegeman, J., Weinbauer, M. G. & Burg, D. Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 1, 1671–1680 (2009).

    ADS 

    Google Scholar 

  • DeLeo, D. M., Glazier, A., Herrera, S., Barkman, A. & Cordes, E. E. Transcriptomic responses of deep-sea corals experimentally exposed to crude oil and dispersant. Front. Mar. Sci. 8, 1–17 (2021).

    Google Scholar 

  • Buddemeier, R., Kleypas, J. A. & Aronson, R. B. Potential contributions of climate change to stresses on coral reef ecosystems. Coral Reefs Global Clim. Change 15, 17789 (2004).

    Google Scholar 

  • Schmidt, C. A. et al. Faster crystallization during coral skeleton formation correlates with resilience to ocean acidification. J. Am. Chem. Soc. 144, 1332–1341 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bors, E. K. et al. Patterns of deep-sea genetic connectivity in the New Zealand Region: Implications for management of benthic ecosystems. PLoS One 7, 11047 (2012).

    Google Scholar 

  • Hernández-Ávila, I. Patterns of deep-water coral diversity in the Caribbean basin and adjacent southern waters: An approach based on records from the R/V Pillsbury Expeditions. PLoS ONE 9, 11 (2014).

    Google Scholar 

  • Alonso, D. et al. Corales de Profundidad: descripción de comunidades coralinas y fauna asociada. (Serie de Publicaciones Generales del Invemar, 2015).

  • Frade, P. R. et al. Semi-permeable species boundaries in the coral genus Madracis: the role of introgression in a brooding coral system. Mol. Phylogenet. Evol. 57, 1072–1090 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Locke, J. M. & Coates, K. A. What are the costs of bad taxonomic practices: and what is Madracis mirabilis? Proc. 11th Int. Coral Reef Symp. 7, 1348–1351 (2008).

    Google Scholar 

  • Palumbi, S. R. The Ecology of Marine Protected Areas. in Marine Community Ecology (eds. Bertness, M., Gaines, S. & Hay, M.) 509–530 (Sinauer Press, Inc, 2001).

  • Jones, G. P., Srinivasan, M. & Almany, G. R. Population connecivity and conservation of marine biodiversity. Oceanography 20, 100 (2007).

    Google Scholar 

  • Fogarty, M. J. & Botsford, L. W. Population connectivity and spatial management of marine fisheries. Oceanography 20, 112–123 (2007).

    Google Scholar 

  • Gillis, L. G. et al. Potential for landscape-scale positive interactions among tropical marine ecosystems. Mar. Ecol. Prog. Ser. 503, 289–303 (2014).

    ADS 

    Google Scholar 

  • Griffiths, S. M. et al. A Galaxy-based bioinformatics pipeline for optimised, streamlined microsatellite development from Illumina next-generation sequencing data. Conserv. Genet. Resour. 8, 481–486 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Botsford, L. W. et al. Connectivity and resilience of coral reef metapopulations in marine protected areas: Matching empirical efforts to predictive needs. Coral Reefs 28, 327–337 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palumbi, S. R. Population genetics, demographic connectivity, and the desing of marine reserves. Ecol. Appl. 13, 146–158 (2003).

    Google Scholar 

  • Ridgway, T., Riginos, C., Davis, J. & Hoegh-Guldberg, O. Genetic connectivity patterns of Pocillopora verrucosa in southern African Marine Protected Areas. Mar. Ecol. Prog. Ser. 354, 161–168 (2008).

    ADS 

    Google Scholar 

  • Hemond, E. M. & Vollmer, S. V. Genetic diversity and connectivity in the threatened staghorn coral (Acropora cervicornis) in Florida. PLoS One 5, 1140 (2010).

    Google Scholar 

  • Goodbody-Gringley, G., Woollacott, R. M. & Giribet, G. Population structure and connectivity in the Atlantic scleractinian coral Montastraea cavernosa (Linnaeus, 1767). Mar. Ecol. 33, 32–48 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Montoya-Maya, P. H., Macdonald, A. H. H. & Schleyer, M. H. Cross-amplification and characterization of microsatellite loci in Acropora austera from the south-western Indian Ocean. Genet. Mol. Res. 13, 1244–1250 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Le Goff-Vitry, M., Pybus, O. G. & Roger, N. Genetic structure of the deep-sea coral. Mol. Ecol. 13, 537–549 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Zeng, C., Rowden, A. A., Clark, M. R. & Gardner, J. P. A. Population genetic structure and connectivity of deep-sea stony corals (Order Scleractinia) in the New Zealand region: Implications for the conservation and management of vulnerable marine ecosystems. Evol. Appl. 10, 1040–1054 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Addamo, A. M., García-Jiménez, R., Taviani, M. & Machordom, A. Development of microsatellite markers in the deep-sea cup coral desmophyllum dianthus by 454 sequencing and cross-species amplifications in scleractinia order. J. Hered. 106, 322–330 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Morrison, C. L., Springmann, M. J., Shroades, K. M. & Stone, R. P. Development of twelve microsatellite loci in the red tree corals Primnoa resedaeformis and Primnoa pacifica. Conserv. Genet. Resour. 7, 763–765 (2015).

    Google Scholar 

  • Baranets, V., Forsman, Z. H. & Karl, S. A. Microsatellite loci for the plate-and-pillar coral, Porities rus. Conserv. Genet. Resour. 3, 519–521 (2011).

    Google Scholar 

  • Gang, H. et al. Evaluating the reliability of microsatellite genotyping from low-quality DNA templates with a polynomial distribution model. Chin. Sci. Bull. 56, 2523–2530 (2011).

    Google Scholar 

  • Taberlet, P. et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 24, 3189–3194 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casado-Amezúa, P. et al. Development of microsatellite markers as a molecular tool for conservation studies of the Mediterranean reef builder coral cladocora caespitosa (Anthozoa, Scleractinia). J. Hered. 102, 622–626 (2011).

    PubMed 

    Google Scholar 

  • Nakajima, Y. et al. Microsatellite markers for multiple Pocillopora genetic lineages offer new insights about coral populations. Sci. Rep. 7, 1–8 (2017).

    ADS 

    Google Scholar 

  • Jenkins, T. L. & Stevens, J. R. Assessing connectivity between MPAs: Selecting taxa and translating genetic data to inform policy. Mar. Policy 94, 165–173 (2018).

    Google Scholar 

  • Flot, J. F., Magalon, H., Cruaud, C., Couloux, A. & Tillier, S. Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. Comptes Rendus Biol. 331, 239–247 (2008).

    Google Scholar 

  • Benzoni, F. et al. Morphological and genetic divergence between Mediterranean and Caribbean populations of Madracis pharensis (Heller 1868) (Scleractinia, Pocilloporidae): Too much for one species? Zootaxa 4471, 473–492 (2018).

    PubMed 

    Google Scholar 

  • Filatov, M. V., Frade, P. R., Bak, R. P. M., Vermeij, M. J. A. & Kaandorp, J. A. Comparison between colony morphology and molecular phylogeny in the Caribbean Scleractinian Coral Genus Madracis. PLoS One 8, 1104 (2013).

    Google Scholar 

  • Althaus, F. et al. Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar. Ecol. Prog. Ser. 397, 279–294 (2009).

    ADS 

    Google Scholar 

  • Alonso, D. et al. Caracterización de las comunidades coralinas del Parque Nacional Natural Corales de Profundidad en el Caribe colombiano: una aproximación a la conservación de su biodiversidad. (2014).

  • Cairns, S. D., Jaap, W. C. & Lang, J. Scleractinia (Cnidaria) of the Gulf of Mexico. (2009).

  • Werding, B. & Erhardt, H. Un encuentro de Madracis Myriaster (Milne-Edwards & Haime) (Scleractinia) en la Bahia de Santa Marta. Colombia. Bull. Mar. Coast. Res. 9, 415 (1977).

    Google Scholar 

  • Blacket, M. J., Robin, C., Good, R. T., Lee, S. F. & Miller, A. D. Universal primers for fluorescent labelling of PCR fragments-an efficient and cost-effective approach to genotyping by fluorescence. Mol. Ecol. Resour. 12, 456–463 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Culley, T. M. et al. An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Appl. Plant Sci. 1, 1300027 (2013).

    Google Scholar 

  • Holleley, C. E. & Geerts, P. G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Covarrubias-pazaran, A. G., Diaz-Garcia, L., Schlautman, B., Salazar, W. & Zalapa, J. Fragman: An R package for fragment analysis. BMC Genet. 17, 1–8 (2016).

    Google Scholar 

  • Alberto, F. MsatAllele_1.0: An R package to visualize the binning of microsatellite alleles. J. Hered. 100, 394–397 (2013).

    Google Scholar 

  • Kamvar, Z. N., Tabima, J. F. & Grunwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 1–14 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Risk assessment for the native anurans from an alien invasive species, American bullfrogs (Lithobates catesbeianus), in South Korea

    Modeling geographical invasions of Solenopsis invicta influenced by land-use patterns