in

Dietary preferences and feeding strategies of Colombian highland woolly monkeys

  • Garber, P. A. Foraging strategies among living primates. Annu. Rev. Anthropol. 16, 339–364 (1987).

    Article 

    Google Scholar 

  • Stephens, D. W. & Krebs, J. K. Foraging Theory (Princeton University Press, 1987).

    Book 

    Google Scholar 

  • Felton, A. M. et al. Nutritional ecology of Ateles chamek in lowland Bolivia: How macronutrient balancing influences food choices. Int. J. Primatol. 30, 675–696 (2009).

    Article 

    Google Scholar 

  • Marshall, A. J. & Wrangham, R. W. Evolutionary consequences of fallback foods. Int. J. Primatol. 28, 1219–1235 (2007).

    Article 

    Google Scholar 

  • Rothman, J. M., Raubenheimer, D., Bryer, M. A. H., Takahashi, M. & Gilbert, C. C. Nutritional contributions of insects to primate diets: Implications for primate evolution. J. Hum. Evol. 71, 59–69 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Felton, A. M. et al. Protein content of diets dictates the daily energy intake of a free-ranging primate. Behav. Ecol. 20, 685–690 (2009).

    Article 

    Google Scholar 

  • Clare, E. L., Symondson, W. O. C. & Fenton, M. B. An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus). Mol. Ecol. 23, 3633–3647 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Stevenson, P. R., Quinones, M. J. & Ahumada, J. A. Influence of fruit availability on ecological overlap among four neotropical primates at Tinigua National Park, Colombia. Biotropica 32, 533–544 (2000).

    Article 

    Google Scholar 

  • Chapman, C. Patterns of foraging and range use by three species of neotropical primates. Primates 29, 177–194 (1988).

    Article 

    Google Scholar 

  • Felton, A. M., Felton, A., Lindenmayer, D. B. & Foley, W. J. Nutritional goals of wild primates. Funct. Ecol. 23, 70–78 (2009).

    Article 

    Google Scholar 

  • Kay, R. On the use of anatomical features to infer foraging behavior in extinct primates. In Adaptations for Foraging in Nonhuman Primates (eds Rodman, P. & Cant, J.) 21–53 (Columbia University Press, 1984).

    Chapter 

    Google Scholar 

  • Bravo, S. P. Seed dispersal and ingestion of insect-infested seeds by black howler monkeys in flooded forests of the Parana River, Argentina: Insect-infested seed ingestion and dispersal. Biotropica 40, 471–476 (2008).

    Article 

    Google Scholar 

  • Deluycker, A. M. Insect prey foraging strategies in Callicebus oenanthe in Northern Peru: Insect foraging in Callicebus oenanthe. Am. J. Primatol. 74, 450–461 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Link, A. Insect-eating by spider monkeys. Neotropical Primates 11, 104–107 (2003).

    ADS 

    Google Scholar 

  • MacKinnon, K. C. Food choice by juvenile capuchin monkeys (Cebus capucinus) in a tropical dry forest. In New Perspectives in the Study of Mesoamerican Primates (eds Estrada, A. et al.) 349–365 (Kluwer Academic Publishers, 2006). https://doi.org/10.1007/0-387-25872-8_17.

    Chapter 

    Google Scholar 

  • Fonseca, M. L., Cruz, D. M., Acosta Rojas, D. C., Páez Crespo, J. & Stevenson, P. R. Influence of arthropod and fruit abundance on the dietary composition of highland Colombian woolly monkeys (Lagothrix lagotricha lugens). Folia Primatol. (Basel) 90, 240–257 (2019).

    Article 

    Google Scholar 

  • Vargas, S. A. et al. Population density and ecological traits of highland woolly monkeys at Cueva de los Guacharos National Park, Colombia. In High Altitude Primates (eds Grow, N. B. et al.) 85–102 (Springer, 2014). https://doi.org/10.1007/978-1-4614-8175-1_5.

    Chapter 

    Google Scholar 

  • Bryer, M. A. H., Chapman, C. A., Raubenheimer, D., Lambert, J. E. & Rothman, J. M. Macronutrient and energy contributions of insects to the diet of a frugivorous monkey (Cercopithecus ascanius). Int. J. Primatol. 36, 839–854 (2015).

    Article 

    Google Scholar 

  • Gómez-Posada, C., Rey-Goyeneche, J. & Tenorio, E. A. Ranging responses to fruit and arthropod availability by a tufted capuchin group (Sapajus apella) in the Colombian Amazon. In Movement Ecology of Neotropical Forest Mammals (eds Reyna-Hurtado, R. & Chapman, C. A.) 195–215 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-03463-4_12.

    Chapter 

    Google Scholar 

  • Mallott, E. K., Garber, P. A. & Malhi, R. S. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus): Mallott et al. Am. J. Phys. Anthropol. 162, 241–254 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Defler, T. R. & Defler, S. B. Diet of a group of Lagothrix lagothricha lagothricha in southeastern Colombia. Int. J. Primatol. 17, 161–190 (1996).

    Article 

    Google Scholar 

  • Di Fiore, A. Diet and feeding ecology of woolly monkeys in a western Amazonian rain forest. Int. J. Primatol. 25, 767–801 (2004).

    Article 

    Google Scholar 

  • Stevenson, P. R., Quinones, M. J. & Ahumada, J. A. Ecological strategies of woolly monkeys (Lagothrix lagotricha) at Tinigua National Park, Colombia. Am. J. Primatol. 32, 123–140 (1994).

    PubMed 
    Article 

    Google Scholar 

  • Izawa, K. Foods and feeding behavior of monkeys in the upper Amazon basin. Primates 16, 295–316 (1975).

    Article 

    Google Scholar 

  • Peres, C. A. Diet and feeding ecology of gray woolly monkeys (Lagothrix lagotricha cana) in central Amazonia: Comparisons with other atelines. Int. J. Primatol. 15, 333–372 (1994).

    Article 

    Google Scholar 

  • Stevenson, P. R. Activity and ranging patterns of Colombian woolly monkeys in north-western Amazonia. Primates 47, 239–247 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Milton, K. & Nessimian, J. L. Evidence for insectivory in two primate species (Callicebus torquatus lugens and Lagothrix lagothricha lagothricha) from northwestern Amazonia. Am. J. Primatol. 6, 367–371 (1984).

    PubMed 
    Article 

    Google Scholar 

  • Soini, P. A synecological study of a primate community in the Pacaya-Samiria National Reservee, Peru. Primate Conserv. 7, 63–71 (1986).

    Google Scholar 

  • Pickett, S. B., Bergey, C. M. & Di Fiore, A. A metagenomic study of primate insect diet diversity: A metagenomic study of primate diet. Am. J. Primatol. 74, 622–631 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Estupiñan, L. & Muñoz, D. Estudio ecológico comparativo de la artropofauna presente en los receptáculos axilares de dos bromeliáceas epífitas en diferentes bosques andinos. In Estudios ecológicos del páramos y del bosque altoandino Cordillera Oriental de Colombia (eds Mora, L. & Sturm, H.) 679–696 (Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 1995).

    Google Scholar 

  • Solé, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B Biol. Sci. 268, 2039–2045 (2001).

    Article 

    Google Scholar 

  • Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 15, 3790–3798 (2002).

    Google Scholar 

  • Gunst, N., Boinski, S. & Fragaszy, D. M. Development of skilled detection and extraction of embedded prey by wild brown capuchin monkeys (Cebus apella apella). J. Comp. Psychol. 124, 194–204 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Panger, M. A. et al. Cross-site differences in foraging behavior of white-faced capuchins (Cebus capucinus). Am. J. Phys. Anthropol. 119, 52–66 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Agostini, I. & Visalberghi, E. Social influences on the acquisition of sex-typical foraging patterns by juveniles in a group of wild tufted capuchin monkeys (Cebus nigritus). Am. J. Primatol. 65, 335–351 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).

    CAS 
    Article 

    Google Scholar 

  • Creer, S. et al. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7, 1008–1018 (2016).

    Article 

    Google Scholar 

  • Clare, E. L., Fraser, E. E., Braid, H. E., Fenton, M. B. & Hebert, P. D. N. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): Using a molecular approach to detect arthropod prey. Mol. Ecol. 18, 2532–2542 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Thuo, D. et al. Food from faeces: Evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS One 14, e0225805 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Siegenthaler, A., Wangensteen, O. S., Benvenuto, C., Campos, J. & Mariani, S. DNA metabarcoding unveils multiscale trophic variation in a widespread coastal opportunist. Mol. Ecol. 28, 232–249 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Esnaola, A., Arrizabalaga-Escudero, A., González-Esteban, J., Elosegi, A. & Aihartza, J. Determining diet from faeces: Selection of metabarcoding primers for the insectivore Pyrenean desman (Galemys pyrenaicus). PLoS One 13, e0208986 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mallott, E. K. & Amato, K. R. The microbial reproductive ecology of white-faced capuchins (Cebus capucinus). Am. J. Primatol. 80, e22896 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Wray, A. K. et al. Predator preferences shape the diets of arthropodivorous bats more than quantitative local prey abundance. Mol. Ecol. 30, 855–873 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Quiroga-González, C. et al. Monitoring the variation in the gut microbiota of captive woolly monkeys related to changes in diet during a reintroduction process. Sci. Rep. 11, 6522 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Prada, C. M. & Stevenson, P. R. Plant composition associated with environmental gradients in tropical montane forests (Cueva de Los Guacharos National Park, Huila, Colombia). Biotropica 48, 568–576 (2016).

    Article 

    Google Scholar 

  • García-Toro, C., Link, A., Páez Crespo, J. & Stevenson, P. R. Home range and daily traveled distances of highland Colombian woolly monkeys (Lagothrix lagothricha lugens): Comparing spatial data from GPS collars and direct follows. In Movement Ecology of Neotropical Forest Mammals (eds Reyna-Hurtado, R. & Chapman, C. A.) 173–193 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-03463-4_3.

    Chapter 

    Google Scholar 

  • Baulu, J. & Redmond, D. E. Some sampling considerations in the quantitation of monkey behavior under field and captive conditions. Primates 19, 391–399 (1978).

    Article 

    Google Scholar 

  • Julliot, C. Seed dispersal by red howling monkeys (Alouatta seniculus) in the tropical rain forest of French Guiana. Int. J. Primatol. 17, 239–258 (1996).

    Article 

    Google Scholar 

  • Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).

    Article 

    Google Scholar 

  • Russo, L., Stehouwer, R., Heberling, J. M. & Shea, K. The composite insect trap: An innovative combination trap for biologically diverse sampling. PLoS One 6, e21079 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ohmart, C. P., Stewart, L. G. & Thomas, J. R. Phytophagous insect communities in the canopies of three Eucalyptus forest types in south-eastern Australia. Austral Ecol. 8, 395–403 (1983).

    Article 

    Google Scholar 

  • Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36, 74–75 (1982).

    Google Scholar 

  • Schowalter, T. D., Webb, J. W. & Crossley, D. A. Communtiy structure and nutrient content of canopy arthropods in clearcut and uncut forest ecosystems. Ecology 62, 1010–1019 (1981).

    Article 

    Google Scholar 

  • Stevenson, P. R. Phenological patterns of woody vegetation at Tinigua Park, Colombia: Methodological comparisons with emphasis on fruit production. Caldasia 26, 125–150 (2004).

    Google Scholar 

  • Vargas, I. & Stevenson, P. R. Patrones fenológicos en la Estación Biológica Mosiro Itajura-Caparú: Producción de frutos estimada a partir de transectos fenológicos y trampas de frutos. In Estación Biológica Mosiro Itajura-Caparú: Biodiversidad en el territorio Yagojé-Apaporis (eds Alarcón-Nieto, G. & Palacios, E.) 99–104 (Conservación Internacional Colombia, 2009).

    Google Scholar 

  • Bautista, S. Patrones de productividad de frutos y dispersión de semillas en diferentes bosques de Colombia, y su relación con la biomasa de primates (2019).

  • King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Invited Review: Molecular analysis of predation: A review of best practice for DNA-based approaches: Optimizing molecular analysis of predation. Mol. Ecol. 17, 947–963 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mata, V. A. et al. How much is enough? Effects of technical and biological replication on metabarcoding dietary analysis. Mol. Ecol. 28, 165–175 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces: DNA barcoding. Mol. Ecol. Resour. 11, 236–244 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jusino, M. A. et al. An improved method for utilizing high-throughput amplicon sequencing to determine the diets of insectivorous animals. Mol. Ecol. Resour. 19, 176–190 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aldasoro, M. et al. Gaining ecological insight on dietary allocation among horseshoe bats through molecular primer combination. PLoS One 14, e0220081 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, 2018).

    Book 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ratnasingham & Hebert. bold: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).

  • Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6, e4925 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Phillips, C. A. & McGrew, W. C. Identifying species in chimpanzee (Pan troglodytes) feces: A methodological lost cause?. Int. J. Primatol. 34, 792–807 (2013).

    Article 

    Google Scholar 

  • Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373–385 (2020).

    Article 

    Google Scholar 

  • Porter, T. M. & Hajibabaei, M. Over 2.5 million COI sequences in GenBank and growing. PLoS One 13, e0200177 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 10, 20140562 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hajibabaei, M. et al. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 6, 959–964 (2006).

    CAS 
    Article 

    Google Scholar 

  • Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321 (2003).

    CAS 
    Article 

    Google Scholar 

  • Piñol, J., Senar, M. A. & Symondson, W. O. C. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28, 407–419 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • R Studio Team. R Studio: Integrated Development of R (Rstudio, PBC, 2020).

  • Hijmans, R. & van Etten, J. raster: Geographic analysis and modeling with raster data (2012).

  • Wickham, H. ggplot2: Elegant graphics for data analysis (2016).

  • Di Fiore, A. & Rodman, P. S. Time allocation patterns of lowland woolly monkeys (Lagothrix lagotricha poeppigii) in a neotropical Terra Firma Forest. Int. J. Primatol. 22, 449–480 (2001).

    Article 

    Google Scholar 

  • Dew, J. L. Foraging, food choice, and food processing by sympatric ripe-fruit specialists: Lagothrix lagotricha poeppigii and Ateles belzebuth belzebuth. Int. J. Primatol. 26, 1107–1135 (2005).

    Article 

    Google Scholar 

  • Deblauwe, I. & Janssens, G. P. J. New insights in insect prey choice by chimpanzees and gorillas in Southeast Cameroon: The role of nutritional value. Am. J. Phys. Anthropol. 135, 42–55 (2008).

    PubMed 
    Article 

    Google Scholar 

  • de Carvalho Jr, O., Ferrari, S. F. & Strier, K. B. Diet of a muriqui group (Brachyteles arachnoides) in continuous primary forest. Primates 45, 201–204 (2004).

    Article 

    Google Scholar 

  • Talebi, M., Bastos, A. & Lee, P. C. Diet of southern muriquis in continuous Brazilian Atlantic forest. Int. J. Primatol. 26, 1175–1187 (2005).

    Article 

    Google Scholar 

  • Kowalzik, B. K., Pavelka, M. S. M., Kutz, S. J. & Behie, A. Parasites, primates, and ant-plants: Clues to the life cycle of Controrchis spp. in black howler monkeys (Alouatta pigra) in Southern Belize. J. Wildl. Dis. 46, 1330–1334 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Tebbich, S., Taborsky, M., Fessl, B., Dvorak, M. & Winkler, H. Feeding behavior of four arboreal Darwin’s finches: Adaptations to spatial and seasonal variability. Condor 106, 95–105 (2004).

    Article 

    Google Scholar 

  • Páez Crespo, J. Comportamiento y caracterización genética de churucos de montaña (Lagothrix lagothricha lugens): Inferencias en la filopatría de machos (Universidad de los Andes, 2016).

    Google Scholar 

  • Blüthgen, N., Verhaagh, M., Goitía, W. & Blüthgen, N. Ant nests in tank bromeliads—An example of non-specific interaction. Insectes Soc. 47, 313–316 (2000).

    Article 

    Google Scholar 

  • Huxley, C. Symbiosos between ants and epiphytes. Biol. Rev. 55, 321–340 (1980).

    Article 

    Google Scholar 

  • Brehm, G., Pitkin, L. M., Hilt, N. & Fiedler, K. Montane Andean rain forests are a global diversity hotspot of geometrid moths: Hotspot of geometrid moths. J. Biogeogr. 32, 1621–1627 (2005).

    Article 

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Campuzano, E. F., Ibarra-Núñez, G., Machkour-M’Rabet, S., Morón-Ríos, A. & Jiménez, M. L. Diversity and seasonal variation of ground and understory spiders from a tropical mountain cloud forest. Insect Sci. 27, 826–844 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Miller, J. S. & Thiaucourt, P. Diversity of prominent moths (Lepidoptera: Noctuoidea: Notodontidae) in the cloud forests of northeastern Ecuador, with descriptions of 27 new species. Ann. Entomol. Soc. Am. 104, 1033–1077 (2011).

    Article 

    Google Scholar 

  • Lambert, J. E. Primate digestion: Interactions among anatomy, physiology, and feeding ecology. Evol. Anthropol. 7, 8–20 (1998).

    Article 

    Google Scholar 

  • Janiak, M. C. No evidence of copy number variation in acidic mammalian chitinase genes (CHIA) in new world and old world monkeys. Int. J. Primatol. 39, 269–284 (2018).

    Article 

    Google Scholar 

  • Remis, M. J. & Dierenfeld, E. S. Digesta passage, digestibility and behavior in captive gorillas under two dietary regimens. Int. J. Primatol. 25, 825–845 (2004).

    Article 

    Google Scholar 

  • Wolda, H. Seasonality of tropical insects. J. Anim. Ecol. 49, 277 (1980).

    Article 

    Google Scholar 

  • Yanoviak, S. P., Walker, H. & Nadkarni, N. M. Arthropod assemblages in vegetative vs. humic portions of epiphyte mats in a neotropical cloud forest. Pedobiologia 48, 51–58 (2004).

    Article 

    Google Scholar 

  • Augspurger, C. K. Seedling survival of tropical tree species: Interactions of dispersal distance, light-gaps, and pathogens. Ecology 65, 1705–1712 (1984).

    Article 

    Google Scholar 

  • Richards, L. A. & Windsor, D. M. Seasonal variation of arthropod abundance in gaps and the understorey of a lowland moist forest in Panama. J. Trop. Ecol. 23, 169–176 (2007).

    Article 

    Google Scholar 

  • Tercel, M. P. T. G., Symondson, W. O. C. & Cuff, J. P. The problem of omnivory: A synthesis on omnivory and DNA metabarcoding. Mol. Ecol. 30, 2199–2206 (2021).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Using seismology for groundwater management

    Bridging careers in aerospace manufacturing and fusion energy, with a focus on intentional inclusion