in

Differences in acute phase response to bacterial, fungal and viral antigens in greater mouse-eared bats (Myotis myotis)

  • Wibbelt, G., Moore, M. S., Schountz, T. & Voigt, C. C. Emerging diseases in Chiroptera: Why bats?. Biol. Let. 6, 438–440 (2010).

    Article 

    Google Scholar 

  • Gonzalez, V. & Banerjee, A. Molecular, ecological, and behavioural drivers of the bat-virus relationship. iScience 25, 104779 (2022).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Brook, C. E. & Dobson, A. P. Bats as ‘special’reservoirs for emerging zoonotic pathogens. Trends Microbiol. 23, 172–180 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kosoy, M. et al. Bartonella spp. in bats, Kenya. Emerg. Infect. Dis. 16, 1875–1881 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Becker, D. J. et al. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philos. Trans. R. Soc. Biol. Sci. 373, 20170089 (2018).

    Article 
    CAS 

    Google Scholar 

  • Muehldorfer, K. Bats and bacterial pathogens: A review. Zoonoses Public Health 60, 93–103 (2013).

    Article 

    Google Scholar 

  • Taylor, M. L. et al. Geographical distribution of genetic polymorphism of the pathogen Histoplasma capsulatum isolated from infected bats, captured in a central zone of Mexico. FEMS Immunol. Med. Microbiol. 45, 451–458 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Schaer, J. et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc. Natl. Acad. Sci. 110, 17415–17419 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Evans, N., Bown, K., Timofte, D., Simpson, V. & Birtles, R. Fatal borreliosis in bat caused by relapsing fever spirochete, United Kingdom. Emerg. Infect. Dis. 15, 1331–1333 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Muehldorfer, K., Speck, S. & Wibbelt, G. Diseases in free-ranging bats from Germany. BMC Vet. Res. 7, 61 (2011).

    Article 

    Google Scholar 

  • Muehldorfer, K., Wibbelt, G., Haensel, J., Riehm, J. & Speck, S. Yersinia species isolated from bats, Germany. Emerg. Infect. Dis. 16, 578–581 (2010).

    Article 

    Google Scholar 

  • Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227–227 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Barlow, A., Jolliffe, T., Tomlin, M., Worledge, L. & Miller, H. Mycotic dermatitis in a vagrant parti-coloured bat (Vespertilio murinus) in Great Britain. Vet. Rec. 169, 614–614 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Simpson, V. R., Borman, A. M., Fox, R. I. & Mathews, F. Cutaneous mycosis in a Barbastelle bat (Barbastella barbastellus) caused by Hyphopichia burtonii. J. Vet. Diagn. Invest. 25, 551–554 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Hecht-Höger, A. et al. Plasma proteomic profiles differ between European and North American myotid bats colonized by Pseudogymnoascus destructans. Mol. Ecol. 29, 1745–1755 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Baker, M., Schountz, T. & Wang, L. F. Antiviral immune responses of bats: A review. Zoonoses Public Health 60, 104–116 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Baker, M. L. & Zhou, P. in Bats and Viruses Vol. 1 (eds Lin-Fa Wang & Christopher Cowled) Ch. 14, 327–348 (John Wiley & Sons, Inc., 2015).

  • Wang, L.-F., Walker, P. J. & Poon, L. L. M. Mass extinctions, biodiversity and mitochondrial function: Are bats ‘special’ as reservoirs for emerging viruses?. Curr. Opin. Virol. 1, 649–657 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Murphy, K. Janeway’s Immunobiology 8th edn. (Garland Science, 2012).

    Google Scholar 

  • Gruys, E., Toussaint, M., Niewold, T. & Koopmans, S. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B Biomed. Biotechnol. 6, 1045–1056 (2005).

    CAS 

    Google Scholar 

  • Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: A review. Comp. Med. 59, 517–526 (2009).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Owen-Ashley, N. T. & Wingfield, J. C. Acute phase responses of passerine birds: Characterization and seasonal variation. J. Ornithol. 148, S583–S591 (2007).

    Article 

    Google Scholar 

  • Kozak, W., Conn, C. A. & Kluger, M. J. Lipopolysaccharide induces fever and depresses locomotor-activity in unrestrained mice. Am. J. Physiol. 266, R125–R135 (1994).

    PubMed 
    CAS 

    Google Scholar 

  • Copeland, S. et al. Acute inflammatory response to endotoxin in mice and humans. Clin. Diagn. Lab. Immunol. 12, 60–67 (2005).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Stockmaier, S., Dechmann, D. K. N., Page, R. A. & Teague O’Mara, M. No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biol. Let. 11, 20150576 (2015).

    Article 
    CAS 

    Google Scholar 

  • Martin, L. B., Scheuerlein, A. & Wikelski, M. Immune activity elevates energy expenditure of house sparrows: A link between direct and indirect costs?. Proc. R. Soc. Lond. B Biol. Sci. 270, 153–158 (2003).

    Article 

    Google Scholar 

  • Sheldon, B. C. & Verhulst, S. Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Audebert, H. J., Pellkofer, T. S., Wimmer, M. L. & Haberl, R. L. Progression in lacunar stroke is related to elevated acute phase parameters. Eur. Neurol. 51, 125–131 (2004).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Lee, K. A., Martin, L. B. & Wikelski, M. C. Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow (Passer domesticus), than its less-invasive congener. Oecologia 145, 244–251 (2005).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Owen-Ashley, N. T., Turner, M., Hahn, T. P. & Wingfield, J. C. Hormonal, behavioral, and thermoregulatory responses to bacterial lipopolysaccharide in captive and free-living white-crowned sparrows (Zonotrichia leucophrys gambelii). Horm. Behav. 49, 15–29 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Coon, C. A. C., Warne, R. W. & Martin, L. B. Acute-phase responses vary with pathogen identity in house sparrows (Passer domesticus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1418–R1425 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kimura, M. et al. Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am. J. Physiol. Regul. Integr. Comp. Physiol. 267, R1596–R1605 (1994).

    Article 
    CAS 

    Google Scholar 

  • Gomez, C. R., Goral, J., Ramirez, L., Kopf, M. & Kovacs, E. J. Aberrant acute-phase response in aged interleukin-6 knockout mice. Shock 25, 581–585 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Barrientos, R. M., Watkins, L. R., Rudy, J. W. & Maier, S. F. Characterization of the sickness response in young and aging rats following E. coli infection. Brain Behav Immun. 23, 450–454 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sköld-Chiriac, S., Nord, A., Tobler, M., Nilsson, J. -Å. & Hasselquist, D. Body temperature changes during simulated bacterial infection in a songbird: Fever at night and hypothermia during the day. J. Exp. Biol. 218, 2961–2969 (2015).

    PubMed 

    Google Scholar 

  • Sköld-Chiriac, S., Nord, A., Nilsson, J. -Å. & Hasselquist, D. Physiological and behavioral responses to an acute-phase response in zebra finches: Immediate and short-term effects. Physiol. Biochem. Zool. 87, 288–298 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Fritze, M. et al. Immune response of hibernating European bats to a fungal challenge. Biol. Open 8, bio046078 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Triana-Llanos, C., Guerrero-Chacón, A. L., Rivera-Ruíz, D., Rojas-Díaz, V. & Niño-Castro, A. The acute phase response elicited by a viral-like molecular pattern increases energy expenditure in Artibeus lituratus. Biologia 74, 667–673 (2019).

    Article 

    Google Scholar 

  • Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Inflammatory challenge increases measures of oxidative stress in a free-ranging, long-lived mammal. J. Exp. Biol. 216, 4514–4519 (2013).

    PubMed 
    CAS 

    Google Scholar 

  • Allen, L. C. et al. Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis). J. Comp. Physiol. B. 179, 315–323 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Otálora-Ardila, A., Herrera, M. L. G., Flores-Martínez, J. J. & Welch, K. C. Jr. Metabolic cost of the activation of immune response in the fish-eating myotis (Myotis vivesi): The effects of inflammation and the acute phase response. PLoS ONE 11, e0164938 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ohmer, M. E. B. et al. Applied ecoimmunology: Using immunological tools to improve conservation efforts in a changing world. Conserv. Physiol. 9, coab074 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond infection: Intergrating competence into reservoir host prediction. Trends Ecol. Evol. 35, P1062–P1065 (2020).

    Article 

    Google Scholar 

  • Kacprzyk, J. et al. A potent anti-inflammatory response in bat macrophages may be linked to extended longevity and viral tolerance. Acta Chiropterologica 19, 219–228 (2017).

    Article 

    Google Scholar 

  • Langlois, M. R. & Delanghe, J. R. Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem. 42, 1589–1600 (1996).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Field, K. A. et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Pathog. 11, e1005168 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Fritze, M. et al. Determinants of defence strategies of a hibernating European bat species towards the fungal pathogen Pseudogymnoascus destructans. Dev. Comp. Immunol. 119, 104017 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Moreno, K. et al. Sick bats stay home alone: Fruit bats practice social distancing when faced with an immunological challenge. Ann. N. Y. Acad. Sci. 1505, 178–190 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Otálora-Ardila, A., Herrera, M. L. G., Flores-Martínez, J. J. & Welch, K. C. Jr. The effect of short-term food restriction on the metabolic cost of the acute phase response in the fish-eating Myotis (Myotis vivesi). Mamm. Biol. 82, 41–47 (2017).

    Article 

    Google Scholar 

  • Voigt, C. C. et al. The immune response of bats differs between pre-migration and migration seasons. Sci. Rep. 10, 17384 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Guerrero-Chacón, A. L., Rivera-Ruíz, D., Rojas-Díaz, V., Triana-Llanos, C. & Niño-Castro, A. Metabolic cost of acute phase response in the frugivorous bat, Artibeus lituratus. Mamm. Res. 63, 397–404 (2018).

    Article 

    Google Scholar 

  • Weise, P., Czirják, G. Á., Lindecke, O., Bumrungsri, S. & Voigt, C. C. Simulated bacterial infection disrupts the circadian fluctuation of immune cells in wrinkle-lipped bats (Chaerephon plicatus). PeerJ 5, e3570 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cabrera-Martínez, L. V., Herrera, M. L. G. & Cruz-Neto, A. P. The energetic cost of mounting an immune response for Pallas’s long-tongued bat (Glossophaga soricina). PeerJ 6, e4627 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cabrera-Martinez, L. V., Herrera, M. L. G. & Cruz-Neto, A. P. Food restriction, but not seasonality, modulates the acute phase response of a neotropical bat. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 229, 93–100 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Stockmaier, S., Bolnick, D. I., Page, R. A. & Carter, G. G. An immune challenge reduces social grooming in vampire bats. Anim. Behav. 140, 141–149 (2018).

    Article 

    Google Scholar 

  • Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190–198 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Measures of the constitutive immune system are linked to diet and roosting habits of Neotropical bats. PLoS ONE 8, e54023 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hasselquist, D. Comparative immunoecology in birds: Hypotheses and tests. J. Ornithol. 148, 571–582 (2007).

    Article 

    Google Scholar 

  • Becker, D. J. et al. Leukocyte profiles reflect geographic range limits and local food abundance in a widespread Neotropical bat. Integr. Comp. Biol. 59, 1176–1189 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Vermeulen, A., Eens, M., Zaid, E. & Müller, W. Baseline innate immunity does not affect the response to an immune challenge in female great tits (Parus major). Behav. Ecol. Sociobiol. 70, 585–592 (2016).

    Article 

    Google Scholar 

  • Melhado, G., Herrera, M. L. G. & Cruz-Neto, A. P. Bats respond to simulated bacterial infection during the active phase by reducing food intake. J. Exp. Zool. A 333, 536–542 (2020).

    Article 
    CAS 

    Google Scholar 

  • Costantini, D. et al. Induced bacterial sickness causes inflammation but not blood oxidative stress in Egyptian fruit bats (Rousettus aegyptiacus). Conserv. Physiol. 10, coac028 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Viljoen, H., Bennett, N. C. & Lutermann, H. Life-history traits, but not season, affect the febrile response to a lipopolysaccharide challenge in highveld mole-rats. J. Zool. 285, 222–229 (2011).

    Article 

    Google Scholar 

  • Ahn, M., Cui, J., Irving, A. T. & Wang, L. F. Unique loss of the PYHIN gene family in bats amongst mammals: Implications for inflammasome sensing. Sci. Rep. 6, 21722 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lilley, T. et al. Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome. Proc. R. Soc. Lond. B Biol. Sci. 284, 20162232 (2017).

    Google Scholar 

  • Mayberry, H. W., McGuire, L. P. & Willis, C. K. Body temperatures of hibernating little brown bats reveal pronounced behavioural activity during deep torpor and suggest a fever response during white-nose syndrome. J. Comp. Physiol. B. 188, 333–343 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Watkins, L. R., Maier, S. F. & Goehler, L. E. Immune activation: The role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63, 289–302 (1995).

    PubMed 
    Article 

    Google Scholar 

  • Grimble, R. F. Interaction between nutrients, pro-inflammatory cytokines and inflammation. Clin. Sci. 91, 121–130 (1996).

    Article 
    CAS 

    Google Scholar 

  • Schultz, E. M., Hahn, T. P. & Klasing, K. C. Photoperiod but not food restriction modulates innate immunity in an opportunistic breeder, Loxia curvirostra. J. Exp. Biol. 220, 722–730 (2016).

    PubMed 

    Google Scholar 

  • Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps: Is immunity the second function of chromatin?. J. Cell Biol. 198, 773–783 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Davis, A. K., Maney, D. L. & Maerz, J. C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 22, 760–772 (2008).

    Article 

    Google Scholar 

  • Bouma, H. R., Carey, H. V. & Kroese, F. G. Hibernation: The immune system at rest?. J. Leukoc. Biol. 88, 619–624 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Crameri, G. et al. Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS ONE 4, e8266 (2009).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Neely, B. A. et al. Surveying the vampire bat (Desmodus rotundus) serum proteome: A resource for identifying immunological proteins and detecting pathogens. J. Proteome Res. 20, 2547–2559 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Hecht, A. M. et al. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis). Sci. Rep. 5, 16604 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Barclay, R. M. R. et al. Can external radiotransmitters be used to assess body temperature and torpor in bats?. J. Mammal. 77, 1102–1106 (1996).

    Article 

    Google Scholar 

  • Pap, P. L., Czirják, G. Á., Vágási, C. I., Barta, Z. & Hasselquist, D. Sexual dimorphism in immune function changes during the annual cycle in house sparrows. Naturwissenschaften 97, 891–901 (2010).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Heinrich, S. K. et al. Feliform carnivores have a distinguished constitutive innate immune response. Biol. Open 5, 550–555 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Heinrich, S. K. et al. Cheetahs have a stronger constitutive innate immunity than leopards. Sci. Rep. 7, 44837 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Morell, V., Lundgren, E. & Gillott, A. Predicting severity of trauma by admission white blood cell count, serum potassium level, and arterial pH. South. Med. J. 86, 658–659 (1993).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • R Core Team. A Language and Environment for Statistical Computing. (R foundation for statistical computing, 2018).

  • Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. Linear and nonlinear mixed effects models. R Package Version 3, 57 (2007).

    Google Scholar 

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE, 2011).

    Google Scholar 

  • Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Ursids evolved early and continuously to be low-protein macronutrient omnivores

    Effect of temperature on the life cycle of Harmonia axyridis (Pallas), and its predation rate on the Spodoptera litura (Fabricius) eggs