Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4(8), 1044–1059 (2020).
Google Scholar
Hobbs, R. J., Valentine, L. E., Standish, R. J. & Jackson, S. T. Movers and stayers: Novel assemblages in changing environments. Trends Ecol. Evol. 33, 116–128 (2017).
Google Scholar
Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).
Google Scholar
Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).
Google Scholar
Gómez-Aparicio, L., García-Valdés, R., Ruíz-Benito, P. & Zavala, M. A. Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: Implications for forest management under global change. Glob. Change Biol. 17, 2400–2414 (2011).
Google Scholar
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).
Google Scholar
Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671. https://doi.org/10.1126/science.aaf7671 (2016).
Google Scholar
Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B-Biol. Sci. 281, 20140846. https://doi.org/10.1098/rspb.2014.0846 (2014).
Google Scholar
Poore, A. G. B. et al. Global patterns in the impact of marine herbivores on benthic primary producers. Ecol. Lett. 15, 912–922. https://doi.org/10.1111/j.1461-0248.2012.01804.x (2012).
Google Scholar
Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J. & Saunders, B. J. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 18, 714–723 (2015).
Google Scholar
Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory and loss of kelp. Proc. Natl. Acad. Sci. 113(48), 13791–13796 (2016).
Google Scholar
Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527. https://doi.org/10.1111/1365-2745.12324 (2014).
Google Scholar
Kumagai, N. H. et al. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc. Natl. Acad. Sci. 115, 8990–8995 (2018).
Google Scholar
Demko, A. M. et al. Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity. Ecology 98, 2312–2321. https://doi.org/10.1002/ecy.1918 (2017).
Google Scholar
Floeter, S. R., Behrens, M. D., Ferreira, C. E. L., Paddack, M. J. & Horn, M. H. Geographical gradients of marine herbivorous fishes: Patterns and processes. Mar Biol 147, 1435–1447 (2005).
Google Scholar
Longo, G. O., Hay, M. E., Ferreira, C. E. L. & Floeter, S. R. Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob. Ecol. Biogeogr. 28, 107–117. https://doi.org/10.1111/geb.12806 (2019).
Google Scholar
Bolser, R. & Hay, M. Are tropical plants better defended? Palatability and defenses of temperate versus tropical seaweeds. Ecology 77, 2269–2286 (1996).
Google Scholar
Borer, E. T. et al. Global biogeography of autotroph chemistry: is insolation a driving force?. Oikos 122, 1121–1130. https://doi.org/10.1111/j.1600-0706.2013.00465.x (2013).
Google Scholar
Miranda, T. et al. Convictfish on the move: Variation in growth and trophic niche space along a latitudinal gradient. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsz098%JICESJournalofMarineScience (2019).
Google Scholar
Linton, S. M. The structure and function of cellulase (endo-β-1, 4-glucanase) and hemicellulase (β-1, 3-glucanase and endo-β-1, 4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 240, 110354 (2020).
Google Scholar
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925. https://doi.org/10.1038/nclimate1958 (2013).
Google Scholar
Nakamura, Y., Feary, D. A., Kanda, M. & Yamaoka, K. Tropical fishes dominate temperate reef fish communities within western Japan. PLoS ONE 8, e81107 (2013).
Google Scholar
Tanaka, K., Taino, S., Haraguchi, H., Prendergast, G. & Hiraoka, M. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol. Evol. 2, 2854–2865. https://doi.org/10.1002/ece3.391 (2012).
Google Scholar
Pessarrodona, A. et al. Homogenization and miniaturization of habitat structure in temperate marine forests. Glob. Change Biol. 27, 5262–5275 (2021).
Google Scholar
Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601. https://doi.org/10.1029/2010gl046474 (2011).
Google Scholar
Mezaki, T. & Kubota, S. Changes of hermatypic coral community in coastal sea area of Kochi, high-latitude Japan. Aquabiology 201, 332–337 (2012).
Serisawa, Y., Imoto, Z., Ishikawa, T. & Ohno, M. Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fish Sci 70, 189–191. https://doi.org/10.1111/j.0919-9268.2004.00788.x (2004).
Google Scholar
Kiriyama, T., Mitsunaga, N., Yasumoto, S., Fujii, A. & Yotsui, T. Undergrown phenomenon of brown alga, Hizikia fusiformis, thought to be caused by grazing of herbivores at Tsutsuura, Tsushima Islands [Japan]. Bulletin of Nagasaki Prefectural Institute of Fisheries (Japan) (1999).
Kiriyama, T., Fujii, A. & Fujita, Y. Feeding and characteristic bite marks on Sargassum fusiforme by several herbivorous fishes. Aquac. Sci. 53, 355–365 (2005).
Yatsuya, K., Kiriyama, T., Kiyomoto, S., Taneda, T. & Yoshimura, T. On the deterioration process of Ecklonia and Eisenia beds observed in 2013 at Gounoura, Iki Island, Nagasaki Prefecture, Japan.-Initiation of the bed degradation due to high water temperature in summer and subsequent cascading effect by the grazing of herbivorous fish in autumn. Algal Resour. 7, 79–94 (2014).
Noda, M., Ohara, H., Murase, N., Ikeda, I. & Yamamoto, K. The grazing of Eisenia bicyclis and several species of Sargassaceous and Cystoseiraceous seaweeds by Siganus fuscescens in relation to the differences of species composition of their seaweed beds. Nippon Suisan Gakkaishi 80, 201–213 (2014).
Google Scholar
Noda, M., Kinoshita, J., Tanada, N. & Murase, N. Characteristics of bite scars observed in kelp forests of Lessoniaceae denuded by short-term foraging damages of the herbivorous fish Siganus fuscecens. J. Natl. Fish. Univ. 66, 111–122 (2018).
Wernberg, T. et al. Seaweed communities in retreat from ocean warming. Curr. Biol. 21, 1828–1832. https://doi.org/10.1016/j.cub.2011.09.028 (2011).
Google Scholar
Terazono, Y., Nakamura, Y., Imoto, Z. & Hiraoka, M. Fish response to expanding tropical Sargassum beds on the temperate coasts of Japan. Mar. Ecol. Prog. Ser. 464, 209–220. https://doi.org/10.3354/meps09873 (2012).
Google Scholar
Duffy, J. E. & Hay, M. E. Seaweed adaptations to herbivory – chemical, structural, and morphological defenses are often adjusted to spatial or temporal patterns of attack. Bioscience 40, 368–375 (1990).
Google Scholar
Endo, H., Suehiro, K., Kinoshita, J. & Agatsuma, Y. Combined effects of temperature and nutrient enrichment on palatability of the brown alga Sargassum yezoense (Yamada) Yoshida & T. Konno. Am. J. Plant Sci. 6, 275 (2015).
Google Scholar
Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: Multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 120, 729–751. https://doi.org/10.1111/bij.12914 (2017).
Google Scholar
Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund–an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).
Google Scholar
Wilson, S. K., Bellwood, D. R., Choat, J. H. & Furnas, M. J. Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr. Mar. Biol. Annu. Rev. 41, 279–309 (2003).
Helfman, G. S. in The Behaviour of Teleost Fishes 366–387 (Springer, 1986).
Prince, J., LeBlanc, W. & Maciá, S. Design and analysis of multiple choice feeding preference data. Oecologia 138, 1–4 (2004).
Google Scholar
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3 3 (2020).
Ohno, M. & Ishikawa, M. Physiological ecology of brown alga, Ecklonia on coast of Tosa Bay, southern Japan. I. Seasonal variation of Ecklonia bed. Rep. USA Marine Biol. Inst. Kochi Univ. 4, 59–73 (1982).
Agostini, S. et al. Simplification, not “tropicalization”, of temperate marine ecosystems under ocean warming and acidification. Glob. Change Biol. 27, 4771–4784 (2021).
Google Scholar
Clements, K. & Choat, J. Influence of season, ontogeny and tide on the diet of the temperate marine herbivorous fish Odax pullus (Odacidae). Mar. Biol. 117, 213–220 (1993).
Google Scholar
Mizuta, H., Hayasaki, J. & Yamamoto, H. Relationship between nitrogen content and sorus formation in the brown alga Laminaria japonica cultivated in southern Hokkaido, Japan. Fish. Sci. 64, 909–913 (1998).
Google Scholar
Kumura, T., Yasui, H. & Mizuta, H. Nutrient requirement for zoospore formation in two alariaceous plants Undaria pinnatifida (Harvey) Suringar and Alaria crassifolia Kjellman (Phaeophyceae: Laminariales). Fish. Sci. 72, 860–869 (2006).
Google Scholar
Qiu, Z. et al. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc. R. Soc. B 286, 20181887 (2019).
Google Scholar
Hoey, A. S. & Bellwood, D. R. Limited functional redundancy in a high diversity system: Single species dominates key ecological process on coral reefs. Ecosystems 12, 1316–1328. https://doi.org/10.1007/s10021-009-9291-z (2009).
Google Scholar
Streit, R. P., Hoey, A. S. & Bellwood, D. R. Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs. Coral Reefs 34, 1037–1047 (2015).
Google Scholar
Van Alstyne, K. L. & Paul, V. J. The biogeography of polyphenolic compounds in marine macroalgae – Temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia 84, 158–163 (1990).
Google Scholar
Targett, N. M., Boettcher, A. A., Targett, T. E. & Vrolijk, N. H. Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia 103, 170–179 (1995).
Google Scholar
Prado, P. & Heck, K. L. Seagrass selection by omnivorous and herbivorous consumers: Determining factors. Mar. Ecol. Prog. Ser. 429, 45–55. https://doi.org/10.3354/meps09076 (2011).
Google Scholar
Montgomery, W. L. & Gerking, S. D. Marine macroalgae as foods for fishes: an evaluation of potential food quality. Environ. Biol. Fish. 5, 143–153 (1980).
Google Scholar
Duffy, J. & Paul & V.J.,. Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes. Oecologia 90, 333–339 (1992).
Google Scholar
Michael, P. J., Hyndes, G. A., Vanderklift, M. A. & Vergés, A. Identity and behaviour of herbivorous fish influence large-scale spatial patterns of macroalgal herbivory in a coral reef. Mar. Ecol. Prog. Ser. 482, 227–240 (2013).
Google Scholar
Bennett, S. & Bellwood, D. R. Latitudinal variation in macroalgal consumption by fishes on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 426, 241–252 (2011).
Google Scholar
Zarco-Perello, S., Wernberg, T., Langlois, T. J. & Vanderklift, M. A. Tropicalization strengthens consumer pressure on habitat-forming seaweeds. Sci. Rep. 7, 820. https://doi.org/10.1038/s41598-017-00991-2 (2017).
Google Scholar
Smith, S. M. et al. Tropicalisation and kelp loss shift trophic composition and lead to more winners than losers in fish communities. Glob. Change Biol. 27(11), 2537–2548 (2021).
Google Scholar
Zarco-Perello, S. et al. Range-extending tropical herbivores increase diversity, intensity and extent of herbivory functions in temperate marine ecosystems. Funct. Ecol. 34, 2411–2421. https://doi.org/10.1111/1365-2435.13662 (2020).
Google Scholar
Source: Ecology - nature.com