in

Differences in phenology, daily timing of activity, and associations of temperature utilization with survival in three threatened butterflies

  • Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai214 (2017).

    Article 
    CAS 

    Google Scholar 

  • Nogués-Bravo, D. et al. Cracking the code of biodiversity responses to past climate change. Trends Ecol. Evol. 33, 765–776 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Forsman, A., Betzholtz, P.-E. & Franzén, M. Faster poleward range shifts in moths with more variable colour patterns. Sci. Rep. 6, 36265 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Voelkl, B. et al. Reproducibility of animal research in light of biological variation. Nat. Rev. Neurosci. 21, 384–393 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rödder, D., Schmitt, T., Gros, P., Ulrich, W. & Habel, J. C. Climate change drives mountain butterflies towards the summits. Sci. Rep. 11, 14382 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Habel, J. C., Teucher, M., Gros, P., Schmitt, T. & Ulrich, W. Land use and climate change affects butterfly diversity across northern Austria. Landscape Ecol. 36, 1741–1754 (2021).

    Article 

    Google Scholar 

  • Hill, J. K. et al. Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc. Biol. Sci. 269, 2163–2171 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, I. C. et al. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl. Acad. Sci. 106, 1479–1483 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).

    ADS 
    Article 

    Google Scholar 

  • Bell, J. R. et al. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Glob. Change Biol. 25, 1982–1994 (2019).

    ADS 
    Article 

    Google Scholar 

  • Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl. Acad. Sci. 117, 18557–18565 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Pruett, J. E. & Warner, D. A. Spatial and temporal variation in phenotypes and fitness in response to developmental thermal environments. Funct. Ecol. 35, 2635–2646 (2021).

    Article 

    Google Scholar 

  • Hall, M., Nordahl, O., Larsson, P., Forsman, A. & Tibblin, P. Intra-population variation in reproductive timing covaries with thermal plasticity of offspring performance in perch Perca fluviatilis. J. Animal Ecol 90, 2236–2347 (2021).

    Article 

    Google Scholar 

  • Ehrlich, P. R. & Hanski, I. On the Wings of Checkerspots: A Model System for Population Biology (Oxford University Press, 2004).

    Google Scholar 

  • Warren, M. S. et al. The decline of butterflies in Europe: Problems, significance, and possible solutions. Proc. Natl. Acad. Sci. 118, e2002551117 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kristensen, N. P. Lepidoptera: Moths and Butterflies. 1. Evolution, Systematics, and Biogeography. Handbook of Zoology Vol. IV, Part 35 (De Gruyter, 1999).

    Google Scholar 

  • Forsman, A. & Wennersten, L. Inter-individual variation promotes ecological success of populations and species: Evidence from experimental and comparative studies. Ecography 39, 630–648 (2016).

    Article 

    Google Scholar 

  • Zografou, K. et al. Species traits affect phenological responses to climate change in a butterfly community. Sci. Rep. 11, 3283 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stevens, C. J. et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 158, 2940–2945 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Heinrich, B. The Thermal Warriors (Harvard University Press, 2013).

    Google Scholar 

  • Bladon, A. J. et al. How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends. J. Anim. Ecol. 89, 2440–2450 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Tsai, C.-C. et al. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 551 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ahnesjö, J. & Forsman, A. Differential habitat selection by pygmy grasshopper color morphs; interactive effects of temperature and predator avoidance. Evol. Ecol. 20, 235–257 (2006).

    Article 

    Google Scholar 

  • Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: Insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Forsman, A. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115, 276–284 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hill, G. M., Kawahara, A. Y., Daniels, J. C., Bateman, C. C. & Scheffers, B. R. Climate change effects on animal ecology: Butterflies and moths as a case study. Biol. Rev. Camb. Philos. Soc. 96, 2113–2126 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gilbert, A. L. & Miles, D. B. Natural selection on thermal preference, critical thermal maxima and locomotor performance. Proc. R. Soc. B Biol. Sci. 284, 20170536 (2017).

    Article 

    Google Scholar 

  • Eliasson, C. U., Ryrholm, N., Holmér, M., Gilg, K. & Gärdenfors, U. Nationalnyckeln till Sveriges flora och fauna. Fjärilar: Dagfjärilar. Hesperidae – Nymphalidae. (ArtDatabanken, SLU, 2005).

  • Thomas, J. A. & Wardlaw, J. C. The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia 91, 101–109 (1992).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vilbas, M. et al. Habitat use of the endangered parasitic butterfly Phengaris arion close to its northern distribution limit. Insect Conserv. Divers. 8, 252–260 (2015).

    Article 

    Google Scholar 

  • Johansson, V., Kindvall, O., Askling, J. & Franzén, M. Extreme weather affects colonization–extinction dynamics and the persistence of a threatened butterfly. J. Appl. Ecol. 57, 1068–1077 (2020).

    Article 

    Google Scholar 

  • Johansson, V., Kindvall, O., Askling, J. & Franzén, M. Intense grazing of calcareous grasslands has negative consequences for the threatened marsh fritillary butterfly. Biol. Cons. 239, 108280 (2019).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical. R version 4.1.1. (2021).

  • Eubank, R. L. & Speckman, P. Curve fitting by polynomial-trigonometric regression. Biometrika 77, 1–9 (1990).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Allen, J. C. A modified sine wave method for calculating degree days. Environ. Entomol. 5, 388–396 (1976).

    Article 

    Google Scholar 

  • Wickham, H. & Wickham, M. H. The ggplot package. Google Scholar. http://ftp.uni-bayreuth.de/math/statlib/R/CRAN/doc/packages/ggplot.pdf, (2007).

  • Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).

    ADS 
    Article 

    Google Scholar 

  • Forsman, A. Some like it hot: Intra-population variation in behavioral thermoregulation in color-polymorphic pygmy grasshoppers. Evol. Ecol. 14, 25–38 (2000).

    Article 

    Google Scholar 

  • Forsman, A., Ringblom, K., Civantos, E. & Ahnesjo, J. Coevolution of color pattern and thermoregulatory behavior in polymorphic pygmy grasshoppers Tetrix undulata. Evolution 56, 349–360 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Ahnesjö, J. & Forsman, A. Correlated evolution of colour pattern and body size in polymorphic pygmy grasshoppers, Tetrix undulata. J. Evol. Biol. 16, 1308–1318 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 3874 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Heidrich, L. et al. The dark side of Lepidoptera: colour lightness of geometrid moths decreases with increasing latitude. Glob. Ecol. Biogeogr. 27, 407–416 (2018).

    MathSciNet 
    Article 

    Google Scholar 

  • Porter, K. Basking behaviour in larvae of the butterfly Euphydryas aurinia. Oikos 38, 308–312 (1982).

    Article 

    Google Scholar 

  • Rolff, J., Johnston, P. R. & Reynolds, S. Complete metamorphosis of insects. Philos. Trans. R. Soc. B 374, 20190063 (2019).

    Article 

    Google Scholar 

  • Thomas, J. A., Simcox, D. J. & Clarke, R. T. Successful conservation of a threatened Maculinea butterfly. Science 325, 80–83 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nilsson, M. & Forsman, A. Evolution of conspicuous colouration, body size and gregariousness: A comparative analysis of lepidopteran larvae. Evol. Ecol. 17, 51–66 (2003).

    Article 

    Google Scholar 

  • Mappes, J., Kokko, H., Ojala, K. & Lindström, L. Seasonal changes in predator community switch the direction of selection for prey defences. Nat. Commun. 5, 5016 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).

    ADS 
    Article 

    Google Scholar 

  • Otaki, J. M., Hiyama, A., Iwata, M. & Kudo, T. Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha. BMC Evol. Biol. 10, 1–13 (2010).

    Article 

    Google Scholar 

  • Galarza, J. A. et al. Evaluating responses to temperature during pre-metamorphosis and carry-over effects at post-metamorphosis in the wood tiger moth (Arctia plantaginis). Philos. Trans. R. Soc. B 374, 20190295 (2019).

    CAS 
    Article 

    Google Scholar 

  • Kingsolver, J. G. The well-temperatured biologist: (American Society of Naturalists Presidential Address). Am. Nat. 174, 755–768 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Lafuente, E. & Beldade, P. Genomics of developmental plasticity in animals. Front. Genet. 10, 720 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Angilletta, M. J. Jr., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol 27, 249–268 (2002).

    Article 

    Google Scholar 

  • Posledovich, D., Toftegaard, T., Wiklund, C., Ehrlén, J. & Gotthard, K. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature. J. Anim. Ecol. 87, 150–161 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Adams, A. Succisa pratensis Moench. J. Ecol. 43, 709–718 (1955).

    Article 

    Google Scholar 

  • Lawton, J. H. & Strong, D. J. Community patterns and competition in folivorous insects. Am. Nat. 118, 317–338 (1981).

    Article 

    Google Scholar 

  • Forsman, A. Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. Proc. Natl. Acad. Sci. 111, 302–307 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Forsman, A., Betzholtz, P.-E. & Franzén, M. Variable coloration is associated with dampened population fluctuations in noctuid moths. Proc. R. Soc. B 282, 1–9 (2015).

    Article 

    Google Scholar 

  • Betzholtz, P. E., Franzén, M. & Forsman, A. Colour pattern variation can inform about extinction risk in moths. Anim. Conserv. 20, 72–79 (2017).

    Article 

    Google Scholar 

  • Klemme, I. & Hanski, I. Heritability of and strong single gene (Pgi) effects on life-history traits in the Glanville fritillary butterfly. J. Evol. Biol. 22, 1944–1953 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mattila, A. L. Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions. Ecol. Evol. 5, 5539–5551 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Russell, B. D. et al. Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems. Biol. Let. 8, 164–166 (2012).

    Article 

    Google Scholar 

  • van Bergen, E. et al. The effect of summer drought on the predictability of local extinctions in a butterfly metapopulation. Conserv. Biol. 34, 1503–1511 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Thomas, J. A., Clarke, R. T., Elmes, G. W. & Hochberg, M. E. in Insect Populations in theory and in practice: 19th Symposium of the Royal Entomological Society 10–11 September 1997 at the University of Newcastle (eds J. P. Dempster & I. F. G. McLean) 261–290 (Springer Netherlands, 1998).

  • Nakonieczny, M., Kedziorski, A. & Michalczyk, K. Apollo butterfly (Parnassius apollo L.) in Europe—Its history, decline and perspectives of conservation. Funct. Ecosyst. Communities 1, 56–79 (2007).

    Google Scholar 

  • Schweiger, O., Harpke, A., Wiemers, M. & Settele, J. CLIMBER: Climatic niche characteristics of the butterflies in Europe. ZooKeys 367, 65–84 (2014).

    Article 

    Google Scholar 

  • Ashton, S., Gutierrez, D. & Wilson, R. J. Effects of temperature and elevation on habitat use by a rare mountain butterfly: Implications for species responses to climate change. Ecological Entomology 34, 437–446 (2009).

    Article 

    Google Scholar 

  • Klockmann, M. & Fischer, K. Effects of temperature and drought on early life stages in three species of butterflies: Mortality of early life stages as a key determinant of vulnerability to climate change?. Ecol. Evol. 7, 10871–10879 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Arboreal camera trap reveals the frequent occurrence of a frugivore-carnivore in neotropical nutmeg trees

    Team creates map for production of eco-friendly metals