in

Different time patterns of the presence of red-eared slider influence the ontogeny dynamics of common frog tadpoles

  • Gerber, B. D., Karpanty, S. M. & Randrianantenaina, J. Activity patterns of carnivores in the rain forests of Madagascar: Implications for species coexistence. J. Mammal. 93, 667–676 (2012).

    Article 

    Google Scholar 

  • Azevedo, F., Lemos, F., Freitas-Junior, M., Rocha, D. & Azevedo, F. Puma activity patterns and temporal overlap with prey in a human-modified landscape at Southeastern Brazil. J. Zool. 305, 246–255 (2018).

    Article 

    Google Scholar 

  • Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27, 337–363 (1996).

    Article 

    Google Scholar 

  • Sitvarin, M. I., Rypstra, A. L. & Harwood, J. D. Linking the green and brown worlds through nonconsumptive predator effects. Oikos 125, 1057–1068 (2016).

    Article 

    Google Scholar 

  • Damien, M. & Tougeron, K. Prey–predator phenological mismatch under climate change. Curr. Opin. Insect Sci. 35, 60–68 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Relyea, R. A. & Werner, E. E. Quantifying the relation between predator-induced behavior and growth performance in larval anurans. Ecology 80, 2117–2124 (1999).

    Article 

    Google Scholar 

  • Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).

    Article 

    Google Scholar 

  • Osman, R. W. & Whitlatch, R. B. The control of the development of a marine benthic community by predation on recruits. J. Exp. Mar. Biol. Ecol. 311, 117–145 (2004).

    Article 

    Google Scholar 

  • Schmidt, B. R., Băncilă, R. I., Hartel, T., Grossenbacher, K. & Schaub, M. Shifts in amphibian population dynamics in response to a change in the predator community. Ecosphere 12, e03528 (2021).

    Article 

    Google Scholar 

  • Falaschi, M., Melotto, A., Manenti, R. & Ficetola, G. F. Invasive species and amphibian conservation. Herpetologica 76, 216–227 (2020).

    Article 

    Google Scholar 

  • Gamradt, S. C. & Kats, L. B. Effect of introduced crayfish and mosquito fish on California newts. Conserv. Biol. 10, 1155–1162 (1996).

    Article 

    Google Scholar 

  • Matthews, K. R., Knapp, R. A. & Pope, K. L. Garter snake distributions in high-elevation aquatic ecosystems: Is there a link with declining amphibian populations and nonnative trout introductions?. J. Herpetol. 36, 16–22 (2002).

    Article 

    Google Scholar 

  • Dodds, W. K. & Whiles, M. R. Freshwater Ecology: Concepts and Environmental Applications 3rd edn. (Elsevier, 2002).

    Google Scholar 

  • Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86, 501–509 (2005).

    Article 

    Google Scholar 

  • Le Roux, E., Kerley, G. I. & Cromsigt, J. P. Megaherbivores modify trophic cascades triggered by fear of predation in an African savanna ecosystem. Curr. Biol. 28, 2493–2499 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Daversa, D. et al. Broadening the ecology of fear: Non-lethal effects arise from diverse responses to predation and parasitism. Proc. R. Soc. B 288, 20202966 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Benard, M. F. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004).

    Article 

    Google Scholar 

  • Van Buskirk, J. & Schmidt, B. R. Predator-induced phenotypic plasticity in larval newts: Trade-offs, selection, and variation in nature. Ecology 81, 3009–3028 (2000).

    Article 

    Google Scholar 

  • McCollum, S. A. & Van Buskirk, J. Costs and benefits of a predator-induced polyphenism in the gray treefrog Hyla chrysoscelis. Evolution 50, 583–593 (1996).

    PubMed 

    Google Scholar 

  • Skelly, D. K. Tadpole communities: pond permanence and predation are powerful forces shaping the structure of tadpole communities. Am. Sci. 85, 36–45 (1997).

    ADS 

    Google Scholar 

  • Sih, A. & Moore, R. D. Delayed hatching of salamander eggs in response to enhanced larval predation risk. Am. Nat. 142, 947–960 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Warkentin, K. M. Adaptive plasticity in hatching age: A response to predation risk trade-offs. Proc. Natl. Acad. Sci. 92, 3507–3510 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Johnson, J. B., Saenz, D., Adams, C. K. & Conner, R. N. The influence of predator threat on the timing of a life-history switch point: Predator-induced hatching in the southern leopard frog (Rana sphenocephala). Can. J. Zool. 81, 1608–1613 (2003).

    Article 

    Google Scholar 

  • Wilbur, H. M. & Fauth, J. E. Experimental aquatic food webs: Interactions between two predators and two prey. Am. Nat. 135, 176–204 (1990).

    Article 

    Google Scholar 

  • Laurila, A. Behavioural responses to predator chemical cues and local variation in antipredator performance in Rana temporaria tadpoles. Oikos 88, 159–168 (2000).

    CAS 
    Article 

    Google Scholar 

  • Gomez-Mestre, I. et al. The shape of things to come: Linking developmental plasticity to post-metamorphic morphology in anurans. J. Evol. Biol. 23, 1364–1373 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vieira, E. A., Duarte, L. F. L. & Dias, G. M. How the timing of predation affects composition and diversity of species in a marine sessile community?. J. Exp. Mar. Biol. Ecol. 412, 126–133 (2012).

    Article 

    Google Scholar 

  • Andrade, M. R., Albeny-Simões, D., Breaux, J. A., Juliano, S. A. & Lima, E. Are behavioural responses to predation cues linked across life cycle stages?. Ecol. Entomol. 42, 77–85 (2017).

    Article 

    Google Scholar 

  • Knapp, R. A. Effects of nonnative fish and habitat characteristics on lentic herpetofauna in Yosemite National Park, USA. Biol. Conserv. 121, 265–279 (2005).

    Article 

    Google Scholar 

  • Kiesecker, J. M. & Blaustein, A. R. Population differences in responses of red-legged frogs (Rana aurora) to introduced bullfrogs. Ecology 78, 1752–1760 (1997).

    Article 

    Google Scholar 

  • Nunes, A. L., Orizaola, G., Laurila, A. & Rebelo, R. Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95, 1520–1530 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Polo-Cavia, N., Gonzalo, A., López, P. & Martín, J. Predator recognition of native but not invasive turtle predators by naïve anuran tadpoles. Anim. Behav. 80, 461–466 (2010).

    Article 

    Google Scholar 

  • Zhang, F., Zhao, J., Zhang, Y., Messenger, K. & Wang, Y. Antipredator behavioral responses of native and exotic tadpoles to novel predator. Asian Herpetol. Res. 6, 51–58 (2015).

    Google Scholar 

  • Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database (Invasive Species Specialist Group, 2000).

    Google Scholar 

  • TTWG. Conservation biology of freshwater turtles and tortoises: A compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group. in Chelonian Research Monographs 7 Turtle of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conversation Status. 8th edn. (eds. Rhodin, A.G.J., Iverson, J.B., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Pritchard, P.C.H., Mittermeier, R.A.). 1–292. (Chelonian Research Foundation and Turtle Conservancy, 2017).

  • GISD. Global Invasive Species Database. http://www.issg.org/database (2021).

  • Berec, M., Klapka, V. & Zemek, R. Effect of an alien turtle predator on movement activity of European brown frog tadpoles. Ital. J. Zool. 83, 68–76 (2016).

    Article 

    Google Scholar 

  • Vodrážková, M., Šetlíková, I. & Berec, M. Chemical cues of an invasive turtle reduce development time and size at metamorphosis in the common frog. Sci. Rep. 10, 1–6 (2020).

    Article 
    CAS 

    Google Scholar 

  • Gibbons, J., Greene, J. & Congdon, J. Life history and ecology of the slider turtle. in Temporal and Spatial Movement Patterns of Sliders and Other Turtles (ed. Gibbons, J.). 201–215. (Smithsonian Institution Press, 1990).

  • Formanowicz, D. R. Anuran tadpole/aquatic insect predator-prey interactions: tadpole size and predator capture success. Herpetologica 42, 367–373 (1986).

    Google Scholar 

  • Semlitsch, R. D. & Gibbons, J. W. Fish predation in size-structured populations of treefrog tadpoles. Oecologia 75, 321–326 (1988).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Teplitsky, C., Piha, H., Laurila, A. & Merilä, J. Common pesticide increases costs of antipredator defenses in Rana temporaria tadpoles. Environ. Sci. Technol. 39, 6079–6085 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Travis, J. Anuran size at metamorphosis: experimental test of a model based on intraspecific competition. Ecology 65, 1155–1160 (1984).

    Article 

    Google Scholar 

  • Wilbur, H. M. & Collins, J. P. Ecological aspects of amphibian metamorphosis: Nonnormal distributions of competitive ability reflect selection for facultative metamorphosis. Science 182, 1305–1314 (1973).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).

    Google Scholar 

  • Woodward, G. & Hildrew, A. G. Body-size determinants of niche overlap and intraguild predation within a complex food web. J. Anim. Ecol. 71, 1063–1074 (2002).

    Article 

    Google Scholar 

  • Relyea, R. A. Getting out alive: How predators affect the decision to metamorphose. Oecologia 152, 389–400 (2007).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Pujol-Buxó, E., San Sebastián, O., Garriga, N. & Llorente, G. A. How does the invasive/native nature of species influence tadpoles’ plastic responses to predators?. Oikos 122, 19–29 (2013).

    Article 

    Google Scholar 

  • Phuge, S., Shetye, K. & Pandit, R. Effect of water level on insect-tadpole predator-prey interactions. Acta Oecol. 108, 103649 (2020).

    Article 

    Google Scholar 

  • Loman, J. Early metamorphosis in common frog Rana temporaria tadpoles at risk of drying: An experimental demonstration. Amphibia-Reptilia 20, 421–430 (1999).

    Article 

    Google Scholar 

  • Stav, G., Kotler, B. P. & Blaustein, L. Direct and indirect effects of dragonfly (Anax imperator) nymphs on green toad (Bufo viridis) tadpoles. Hydrobiologia 579, 85–93 (2007).

    Article 

    Google Scholar 

  • Goldberg, T., Nevo, E. & Degani, G. Phenotypic plasticity in larval development of six amphibian species in stressful natural environments. Zool. Stud. 51, 345–361 (2012).

    Google Scholar 

  • Kishida, O., Costa, Z., Tezuka, A. & Michimae, H. Inducible offences affect predator–prey interactions and life-history plasticity in both predators and prey. J. Anim. Ecol. 83, 899–906 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Leips, J. & Travis, J. Metamorphic responses to changing food levels in two species of hylid frogs. Ecology 75, 1345–1356 (1994).

    Article 

    Google Scholar 

  • Alford, R. A. & Harris, R. N. Effects of larval growth history on anuran metamorphosis. Am. Nat. 131, 91–106 (1988).

    Article 

    Google Scholar 

  • Loman, J. Temperature, genetic and hydroperiod effects on metamorphosis of brown frogs Rana arvalis and R. temporaria in the field. J. Zool. 258, 115–129 (2002).

    Article 

    Google Scholar 

  • Laugen, A. T. et al. Quantitative genetics of larval life-history traits in Rana temporaria in different environmental conditions. Genet. Res. 86, 161–170 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brodie, E. D. & Formanowicz, D. R. Prey size preference of predators: Differential vulnerability of larval anurans. Herpetologica 39, 67–75 (1983).

    Google Scholar 

  • Eklöv, P. & Werner, E. E. Multiple predator effects on size-dependent behavior and mortality of two species of anuran larvae. Oikos 88, 250–258 (2000).

    Article 

    Google Scholar 

  • Urban, M. C. Predator size and phenology shape prey survival in temporary ponds. Oecologia 154, 571–580 (2007).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Jara, F. G. & Perotti, M. G. Risk of predation and behavioural response in three anuran species: influence of tadpole size and predator type. Hydrobiologia 644, 313–324 (2010).

    Article 

    Google Scholar 

  • Wassersug, R. J. & Sperry, D. G. The relationships of locomotion to differential predation on Pseudacris triseriata (Anura: Hylidae). Ecology 58, 830–839 (1977).

    Article 

    Google Scholar 

  • Huey, R. B. Sprint velocity of tadpoles (Bufo boreas) through metamorphosis. Copeia 1980, 537–540 (1980).

    Article 

    Google Scholar 

  • Laurila, A. & Kujasalo, J. Habitat duration, predation risk and phenotypic plasticity in common frog (Rana temporaria) tadpoles. J. Anim. Ecol. 68, 1123–1132 (1999).

    Article 

    Google Scholar 

  • Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: grow now, pay later?. Trends Ecol. Evol. 16, 254–260 (2001).

    PubMed 
    Article 

    Google Scholar 

  • Downie, J. & Weir, A. Developmental arrest in Leptodactylus fuscus tadpoles (Anura: Leptodactylidae) III effect of length of arrest period on growth potential. Herpetol. J. 7, 85–92 (1997).

    Google Scholar 

  • Smith, D. C. Adult recruitment in chorus frogs: Effects of size and date at metamorphosis. Ecology 68, 344–350 (1987).

    Article 

    Google Scholar 

  • Altwegg, R. & Reyer, H. U. Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57, 872–882 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Brunelli, E. et al. Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles. Aquat. Toxicol. 91, 135–142 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boone, M. D. Juvenile frogs compensate for small metamorph size with terrestrial growth: Overcoming the effects of larval density and insecticide exposure. J. Herpetol. 39, 416–423 (2005).

    Article 

    Google Scholar 

  • Schmidt, B. R., Hödl, W. & Schaub, M. From metamorphosis to maturity in complex life cycles: Equal performance of different juvenile life history pathways. Ecology 93, 657–667 (2012).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Unravelling seasonal trends in coastal marine heatwave metrics across global biogeographical realms

    MIT Climate “Plug-In” highlights first year of progress on MIT’s climate plan