in

Discovery of a Ni2+-dependent guanidine hydrolase in bacteria

  • Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Schulze, E. Ueber einige stickstoffhaltige Bestandtheile der Keimlinge von Vicia sativa. Z. Phys. Chem. 17, 193–216 (1893).

    Google Scholar 

  • Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kato, T., Yamagata, M. & Tsukahara, S. Guanidine compounds in fruit trees and their seasonal variations in citrus (Citrus unshiu Marc.). J. Jpn. Soc. Hortic. Sci. 55, 169–173 (1986).

    CAS 

    Google Scholar 

  • Gund, P. Guanidine, trimethylenemethane, and “Y-delocalization.” Can acyclic compounds have “aromatic” stability? J. Chem. Educ. 49, 100 (1972).

    CAS 

    Google Scholar 

  • Güthner, T., Mertschenk, B. & Schulz, B. In Ullmann’s Fine Chemicals vol. 2, 657–672 (Wiley-VCH, 2014).

  • Strecker, A. Untersuchungen über die chemischen Beziehungen zwischen Guanin, Xanthin, Theobromin, Caffeïn und Kreatinin. Justus Liebigs Ann. Chem. 118, 151–177 (1861).

    Google Scholar 

  • Iwanoff, N. N. & Awetissowa, A. N. The fermentative conversion of guanidine in urea. Biochem. Z. 231, 67–78 (1931).

    Google Scholar 

  • Lenkeit, F., Eckert, I., Hartig, J. S. & Weinberg, Z. Discovery and characterization of a fourth class of guanidine riboswitches. Nucleic Acids Res. 48, 12889–12899 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salvail, H., Balaji, A., Yu, D., Roth, A. & Breaker, R. R. Biochemical validation of a fourth guanidine riboswitch class in bacteria. Biochemistry 59, 4654–4662 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Nelson, J. W., Atilho, R. M., Sherlock, M. E., Stockbridge, R. B. & Breaker, R. R. Metabolism of free guanidine in bacteria is regulated by a widespread riboswitch class. Mol. Cell 65, 220–230 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Sherlock, M. E. & Breaker, R. R. Biochemical validation of a third guanidine riboswitch class in bacteria. Biochemistry 56, 359–363 (2016).

    Google Scholar 

  • Sherlock, M. E., Malkowski, S. N. & Breaker, R. R. Biochemical validation of a second guanidine riboswitch class in bacteria. Biochemistry 56, 352–358 (2016).

    Google Scholar 

  • Kermani, A. A., Macdonald, C. B., Gundepudi, R. & Stockbridge, R. B. Guanidinium export is the primal function of SMR family transporters. Proc. Natl Acad. Sci. USA 115, 3060–3065 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinn, M., Hauth, F., Lenkeit, F., Weinberg, Z. & Hartig, J. S. Widespread bacterial utilization of guanidine as nitrogen source. Mol. Microbiol. 116, 200–210 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Schneider, N. O. et al. Solving the conundrum: widespread proteins annotated for urea metabolism in bacteria are carboxyguanidine deiminases mediating nitrogen assimilation from guanidine. Biochemistry 59, 3258–3270 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, J., Zhu, L., Fan, C., Wu, Y. & Xiang, S. Structure and function of urea amidolyase. Biosci. Rep. 38, BSR20171617 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mobley, H. L., Island, M. D. & Hausinger, R. P. Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mazzei, L., Musiani, F. & Ciurli, S. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. J. Biol. Inorg. Chem. 25, 829–845 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uribe, E. et al. Functional analysis of the Mn2+ requirement in the catalysis of ureohydrolases arginase and agmatinase – a historical perspective. J. Inorg. Biochem. 202, 110812 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Perozich, J., Hempel, J. & Morris, S. M. Jr Roles of conserved residues in the arginase family. Biochim. Biophys. Acta 1382, 23–37 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Sekowska, A., Danchin, A. & Risler, J. L. Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology 146, 1815–1828 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Sekula, B. The neighboring subunit is engaged to stabilize the substrate in the active site of plant arginases. Front. Plant Sci. 11, 987 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Quintero, M. J., Muro-Pastor, A. M., Herrero, A. & Flores, E. Arginine catabolism in the cyanobacterium Synechocystis sp. strain PCC 6803 involves the urea cycle and arginase pathway. J. Bacteriol. 182, 1008–1015 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lacasse, M. J., Summers, K. L., Khorasani-Motlagh, M., George, G. N. & Zamble, D. B. Bimodal nickel-binding site on Escherichia coli [NiFe]-hydrogenase metallochaperone HypA. Inorg. Chem. 58, 13604–13618 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann, D., Gutekunst, K., Klissenbauer, M., Schulz-Friedrich, R. & Appel, J. Mutagenesis of hydrogenase accessory genes of Synechocystis sp. PCC 6803. FEBS J. 273, 4516–4527 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Dowling, D. P., Di Costanzo, L., Gennadios, H. A. & Christianson, D. W. Evolution of the arginase fold and functional diversity. Cell. Mol. Life Sci. 65, 2039–2055 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dutta, A., Mazumder, M., Alam, M., Gourinath, S. & Sau, A. K. Metal-induced change in catalytic loop positioning in Helicobacter pylori arginase alters catalytic function. Biochem. J. 476, 3595–3614 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Di Costanzo, L. et al. Crystal structure of human arginase I at 1.29-Å resolution and exploration of inhibition in the immune response. Proc. Natl Acad. Sci. USA 102, 13058–13063 (2005).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alfano, M. & Cavazza, C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci. 29, 1071–1089 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, B. et al. A guanidine-degrading enzyme controls genomic stability of ethylene-producing cyanobacteria. Nat. Commun. 12, 5150 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGee, D. J. et al. Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily. Eur. J. Biochem. 271, 1952–1962 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Arakawa, N., Igarashi, M., Kazuoka, T., Oikawa, T. & Soda, K. d-Arginase of Arthrobacter sp. KUJ 8602: characterization and its identity with Zn2+-guanidinobutyrase. J. Biochem. 133, 33–42 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Saragadam, T., Kumar, S. & Punekar, N. S. Characterization of 4-guanidinobutyrase from Aspergillus niger. Microbiology 165, 396–410 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Viator, R. J., Rest, R. F., Hildebrandt, E. & McGee, D. J. Characterization of Bacillus anthracis arginase: effects of pH, temperature, and cell viability on metal preference. BMC Biochem. 9, 15 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • D’Antonio, E. L., Hai, Y. & Christianson, D. W. Structure and function of non-native metal clusters in human arginase I. Biochemistry 51, 8399–8409 (2012).

    PubMed 

    Google Scholar 

  • Andresen, E., Peiter, E. & Küpper, H. Trace metal metabolism in plants. J. Exp. Bot. 69, 909–954 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Eisenhut, M. Manganese homeostasis in cyanobacteria. Plants 9, 18 (2019).

    PubMed Central 

    Google Scholar 

  • Burnat, M. & Flores, E. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena. MicrobiologyOpen 3, 777–792 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callahan, B. P., Yuan, Y. & Wolfenden, R. The burden borne by urease. J. Am. Chem. Soc. 127, 10828–10829 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Lewis, C. A. Jr & Wolfenden, R. The nonenzymatic decomposition of guanidines and amidines. J. Am. Chem. Soc. 136, 130–136 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Grobben, Y. et al. Structural insights into human Arginase-1 pH dependence and its inhibition by the small molecule inhibitor CB-1158. J. Struct. Biol. X 4, 100014 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Mills, L. A., McCormick, A. J. & Lea-Smith, D. J. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci. Rep. 40, BSR20193325 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giner-Lamia, J. et al. Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp PCC 6803. Nucleic Acids Res. 45, 11800–11820 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez, S. & Hausinger, R. P. Biochemical and spectroscopic characterization of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. Biochemistry 55, 5989–5999 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Copeland, R. A. et al. An iron(IV)-oxo intermediate initiating l-arginine oxidation but not ethylene production by the 2-oxoglutarate-dependent oxygenase, ethylene-forming enzyme. J. Am. Chem. Soc. 143, 2293–2303 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111, 1–61 (1979).

    Google Scholar 

  • Geyer, J. W. & Dabich, D. Rapid method for determination of arginase activity in tissue homogenates. Anal. Biochem. 39, 412–417 (1971).

    CAS 
    PubMed 

    Google Scholar 

  • van Anken, H. C. & Schiphorst, M. E. A kinetic determination of ammonia in plasma. Clin. Chim. Acta 56, 151–157 (1974).

    PubMed 

    Google Scholar 

  • Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lamzin, V. S. P. A., Wilson, K. S. In International Tables for Crystallography Vol. F (eds Arnold, E. et al.) 525–528 (Kluwer, 2012).

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006).

    ADS 
    PubMed 

    Google Scholar 

  • Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemoine, F. et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res. 47, W260–W265 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Using nature’s structures in wooden buildings