in

Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing

  • Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46. https://doi.org/10.1146/annurev.arplant.54.031902.134938.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843. https://doi.org/10.1126/science.1246843.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hildén K, Hakala TK, Lundell T. Thermotolerant and thermostable laccases. Biotechnol Lett. 2009;31:1117. https://doi.org/10.1007/s10529-009-9998-0.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2018;1. https://doi.org/10.1038/s41396-018-0279-6.

  • Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22:394–400. https://doi.org/10.1016/j.copbio.2010.10.009.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, et al. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environ Microbiol Rep. 2017;9:679–705. https://doi.org/10.1111/1758-2229.12597.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Singh R, Hu J, Regner MR, Round JW, Ralph J, Saddler JN, et al. Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Sci Rep. 2017;7:42121. https://doi.org/10.1038/srep42121.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perna V, Meyer AS, Holck J, Eltis LD, Eijsink VGH, Wittrup Agger J. Laccase-catalyzed oxidation of lignin induces production of H2O2. ACS Sustain Chem Eng. 2020;8:831–41. https://doi.org/10.1021/acssuschemeng.9b04912.

    CAS 
    Article 

    Google Scholar 

  • Johnson CW, Salvachúa D, Rorrer NA, Black BA, Vardon DR, St. John PC, et al. Innovative chemicals and materials from bacterial aromatic catabolic pathways. Joule. 2019;3:1523–37. https://doi.org/10.1016/j.joule.2019.05.011.

    CAS 
    Article 

    Google Scholar 

  • Brady AL, Sharp CE, Grasby SE, Dunfield PF. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing. Front Microbiol. 2015;6. https://doi.org/10.3389/fmicb.2015.00897.

  • Grasby SE, Hutcheon I, Krouse HR. The influence of water–rock interaction on the chemistry of thermal springs in western Canada. Appl Geochem. 2000;15:439–54. https://doi.org/10.1016/S0883-2927(99)00066-9.

    CAS 
    Article 

    Google Scholar 

  • Bauchop T, Elsden SR. The growth of micro-organisms in relation to their energy supply. Microbiology. 1960;23:457–69. https://doi.org/10.1099/00221287-23-3-457.

    CAS 
    Article 

    Google Scholar 

  • Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6. https://doi.org/10.1038/nprot.2007.109.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019;13:413–29. https://doi.org/10.1038/s41396-018-0279-6.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wilhelm R, Szeitz A, Klassen TL, Mohn WW. Sensitive, efficient quantitation of 13C-enriched nucleic acids via ultrahigh-performance liquid chromatography-tandem mass spectrometry for applications in stable isotope probing. Appl Environ Microbiol. 2014;80:7206–11. https://doi.org/10.1128/AEM.02223-14.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.

    CAS 
    Article 

    Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.1089/cmb.2012.0021.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin H-H, Liao Y-C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:24175. https://doi.org/10.1038/srep24175.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359. https://doi.org/10.7717/peerj.7359.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alneberg J, Bjarnason BS, Bruijn ID, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6. https://doi.org/10.1038/nmeth.3103.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinforma Oxf Engl. 2016;32:605–7. https://doi.org/10.1093/bioinformatics/btv638.

    CAS 
    Article 

    Google Scholar 

  • Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43. https://doi.org/10.1038/s41564-018-0171-1.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55. https://doi.org/10.1101/gr.186072.114.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119. https://doi.org/10.1186/1471-2105-11-119.

    CAS 
    Article 

    Google Scholar 

  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. https://doi.org/10.1038/nmeth.3176.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5. https://doi.org/10.1093/nar/gkt1178.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101. https://doi.org/10.1093/nar/gky418.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32. https://doi.org/10.1093/nar/gky995.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29:41–3.

    CAS 
    Article 

    Google Scholar 

  • Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btz859.

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15. https://doi.org/10.1186/s13059-014-0550-8.

  • R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. https://www.R-project.org.

  • Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5. https://doi.org/10.1093/nar/gkw290.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36. https://doi.org/10.1111/2041-210X.12628.

    Article 

    Google Scholar 

  • Brenner AJ, Harris ED. A quantitative test for copper using bicinchoninic acid. Anal Biochem. 1995;226:80–4. https://doi.org/10.1006/abio.1995.1194.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Brown ME, Barros T, Chang MCY. Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol. 2012;7:2074–81. https://doi.org/10.1021/cb300383y.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Levy-Booth DJ, Hashimi A, Roccor R, Liu L-Y, Renneckar S, Eltis LD, et al. Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. ISME J. 2021;15:879–93. https://doi.org/10.1038/s41396-020-00820-x.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Aston JE, Apel WA, Lee BD, Thompson DN, Lacey JA, Newby DT, et al. Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius. J Ind Microbiol Biotechnol. 2016;43:13–23. https://doi.org/10.1007/s10295-015-1700-z.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Morgan-Lang C, McLaughlin R, Armstrong Z, Zhang G, Chan K, Hallam SJ. TreeSAPP: the tree-based sensitive and accurate phylogenetic profiler. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btaa588.

  • Machczynski MC, Vijgenboom E, Samyn B, Canters GW. Characterization of SLAC: a small laccase from streptomyces coelicolor with unprecedented activity. Protein Sci Publ Protein Soc. 2004;13:2388–97. https://doi.org/10.1110/ps.04759104.

    CAS 
    Article 

    Google Scholar 

  • Berini F, Verce M, Ausec L, Rosini E, Tonin F, Pollegioni L, et al. Isolation and characterization of a heterologously expressed bacterial laccase from the anaerobe Geobacter metallireducens. Appl Microbiol Biotechnol. 2018;102:2425–39. https://doi.org/10.1007/s00253-018-8785-z.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yin Q, Zhou G, Peng C, Zhang Y, Kües U, Liu J, et al. The first fungal laccase with an alkaline pH optimum obtained by directed evolution and its application in indigo dye decolorization. AMB Express. 2019;9:151. https://doi.org/10.1186/s13568-019-0878-2.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar D, Kumar A, Sondhi S, Sharma P, Gupta N. An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis. 3 Biotech. 2018;8:182. https://doi.org/10.1007/s13205-018-1181-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hilgers R, Vincken J-P, Gruppen H, Kabel MA. Laccase/mediator systems: their reactivity toward phenolic lignin structures. ACS Sustain Chem Eng. 2018;6:2037–46. https://doi.org/10.1021/acssuschemeng.7b03451.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu S, Argyropoulos D. An improved method for isolating lignin in high yield and purity. J Pulp Pap Sci. 2003;29:235–40.

    CAS 

    Google Scholar 

  • Gao R, Li Y, Kim H, Mobley JK, Ralph J. Selective oxidation of lignin model compounds. ChemSusChem. 2018;11:2045–50. https://doi.org/10.1002/cssc.201800598.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS. Chemoselective metal-free aerobic alcohol oxidation in lignin. J Am Chem Soc. 2013;135:6415–8. https://doi.org/10.1021/ja401793n.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schutyser W, Renders T, Bosch SV, den, Koelewijn S-F, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev. 2018;47:852–908. https://doi.org/10.1039/C7CS00566K.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sun X, Bai R, Zhang Y, Wang Q, Fan X, Yuan J, et al. Laccase-catalyzed oxidative polymerization of phenolic compounds. Appl Biochem Biotechnol. 2013;171:1673–80. https://doi.org/10.1007/s12010-013-0463-0.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hu D, Zang Y, Mao Y, Gao B. Identification of molecular markers that are specific to the class Thermoleophilia. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.01185.

  • Chen M-Y, Wu S-H, Lin G-H, Lu C-P, Lin Y-T, Chang W-C, et al. Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol. 2004;54:1849–55. https://doi.org/10.1099/ijs.0.63109-0.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tomariguchi N, Miyazaki K. Complete genome sequence of Rubrobacter xylanophilus strain AA3-22, isolated from Arima Onsen in Japan. Microbiol Resour Announc. 2019;8. https://doi.org/10.1128/MRA.00818-19.

  • Ceballos SJ, Yu C, Claypool JT, Singer SW, Simmons BA, Thelen MP, et al. Development and characterization of a thermophilic, lignin degrading microbiota. Process Biochem. 2017;63:193–203. https://doi.org/10.1016/j.procbio.2017.08.018.

    CAS 
    Article 

    Google Scholar 

  • Clark Mason J, Richards M, Zimmermann W, Broda P. Identification of extracellular proteins from actinomycetes responsible for the solubilisation of lignocellulose. Appl Microbiol Biotechnol. 1988;28:276–80. https://doi.org/10.1007/BF00250455.

    Article 

    Google Scholar 

  • Yin Y-R, Sang P, Xian W-D, Li X, Jiao J-Y, Liu L, et al. Expression and characteristics of two glucose-tolerant GH1 β-glucosidases from Actinomadura amylolytica YIM 77502T for promoting cellulose degradation. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.03149.

  • Zimmermann W, Broda P. Utilization of lignocellulose from barley straw by actinomycetes. Appl Microbiol Biotechnol. 1989;30:103–9. https://doi.org/10.1007/BF00256005.

    CAS 
    Article 

    Google Scholar 

  • Abe T, Masai E, Miyauchi K, Katayama Y, Fukuda M. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6. J Bacteriol. 2005;187:2030–7. https://doi.org/10.1128/JB.187.6.2030-2037.2005.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varman AM, He L, Follenfant R, Wu W, Wemmer S, Wrobel SA, et al. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proc Natl Acad Sci USA. 2016;113:E5802–11. https://doi.org/10.1073/pnas.1606043113.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Studenik S, Vogel M, Diekert G. Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2. J Bacteriol. 2012;194:3317–26. https://doi.org/10.1128/JB.00146-12.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fahrbach M, Kuever J, Remesch M, Huber BE, Kämpfer P, Dott W, et al. Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol. 2008;58:2215–23. https://doi.org/10.1099/ijs.0.65342-0.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Nogi Y, Yoshizumi M, Hamana K, Miyazaki M, Horikoshi K. Povalibacter uvarum gen. nov., sp. nov., a polyvinyl-alcohol-degrading bacterium isolated from grapes. Int J Syst Evol Microbiol. 2014;64:2712–7. https://doi.org/10.1099/ijs.0.062620-0.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sharma V, Siedenburg G, Birke J, Mobeen F, Jendrossek D, Prakash T. Metabolic and taxonomic insights into the Gram-negative natural rubber degrading bacterium Steroidobacter cummioxidans sp. nov., strain 35Y. PLoS ONE. 2018;13:e0197448. https://doi.org/10.1371/journal.pone.0197448.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS ONE. 2013;8:e65633. https://doi.org/10.1371/journal.pone.0065633.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christopher LP, Yao B, Ji Y. Lignin biodegradation with laccase-mediator systems. Front Energy Res. 2014;2. https://doi.org/10.3389/fenrg.2014.00012.

  • Mate DM, Alcalde M. Laccase: a multi‐purpose biocatalyst at the forefront of biotechnology. Micro Biotechnol. 2016;10:1457–67. https://doi.org/10.1111/1751-7915.12422.

    CAS 
    Article 

    Google Scholar 

  • Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J. The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database J Biol Databases Curation. 2011;2011. https://doi.org/10.1093/database/bar006.

  • Fang Z, Li T, Wang Q, Zhang X, Peng H, Fang W, et al. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol. 2011;89:1103–10. https://doi.org/10.1007/s00253-010-2934-3.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Komori H, Miyazaki K, Higuchi Y. X-ray structure of a two-domain type laccase: a missing link in the evolution of multi-copper proteins. FEBS Lett. 2009;583:1189–95. https://doi.org/10.1016/j.febslet.2009.03.008.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sherif M, Waung D, Korbeci B, Mavisakalyan V, Flick R, Brown G, et al. Biochemical studies of the multicopper oxidase (small laccase) from Streptomyces coelicolor using bioactive phytochemicals and site-directed mutagenesis. Microb Biotechnol. 2013;6:588–97. https://doi.org/10.1111/1751-7915.12068

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gunne M, Urlacher VB. Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. PLOS ONE. 2012;7:e52360 https://doi.org/10.1371/journal.pone.0052360

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dubé E, Shareck F, Hurtubise Y, Beauregard M, Daneault C. Decolourization of recalcitrant dyes with a laccase from Streptomyces coelicolor under alkaline conditions. J Ind Microbiol Biotechnol. 2008;35:1123–9. https://doi.org/10.1007/s10295-008-0391-0

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB. Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol. 2008;79:217–24. https://doi.org/10.1007/s00253-008-1417-2

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mohammadian M, Fathi-Roudsari M, Mollania N, Badoei-Dalfard A, Khajeh K. Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol. 2010;37:863–9. https://doi.org/10.1007/s10295-010-0734-5

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ausec L, Berini F, Casciello C, Cretoiu MS, van Elsas JD, Marinelli F, et al. The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl Microbiol Biotechnol. 2017;101:6261–76. https://doi.org/10.1007/s00253-017-8345-y

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ausec L, Črnigoj M, Šnajder M, Ulrih NP, Mandic-Mulec I. Characterization of a novel high-pH-tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp. Appl Microbiol Biotechnol. 2015;99:9987–99. https://doi.org/10.1007/s00253-015-6843-3

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Engineers use artificial intelligence to capture the complexity of breaking waves

    Food deprivation alters reproductive performance of biocontrol agent Hadronotus pennsylvanicus