in

Dispersal and fire limit Arctic shrub expansion

  • Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Chang. 3, 673–677 (2013).

    ADS 
    Article 

    Google Scholar 

  • Wang, J. A. et al. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing. Glob. Chang. Biol. 26, 807–822 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Mekonnen, Z. A. et al. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 16, 053001 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2, 453–457 (2012).

    ADS 
    Article 

    Google Scholar 

  • Sturm, M., Racine, C. & Tape, K. Climate change. Increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Chang. Biol. 12, 686–702 (2006).

    ADS 
    Article 

    Google Scholar 

  • Forbes, B. C., Fauria, M. M. & Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob. Chang. Biol. 16, 1542–1554 (2010).

    ADS 
    Article 

    Google Scholar 

  • Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 10, 106–117 (2020).

    ADS 
    Article 

    Google Scholar 

  • Chapin, F. S. 3rd et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295–1300 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).

    ADS 
    Article 

    Google Scholar 

  • Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Paradis, M., Lévesque, E. & Boudreau, S. Greater effect of increasing shrub height on winter versus summer soil temperature. Environ. Res. Lett. 11, 085005 (2016).

    ADS 
    Article 

    Google Scholar 

  • Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, Y. et al. Future increases in Arctic lightning and fire risk for permafrost carbon. Nat. Clim. Chang. 11, 404–410 (2021).

    ADS 
    Article 

    Google Scholar 

  • Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Chang. 8, 825–828 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Büntgen, U. et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 103, 489–501 (2015).

    Article 

    Google Scholar 

  • Myers-Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2018).

    Article 

    Google Scholar 

  • Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).

    CAS 
    Article 

    Google Scholar 

  • Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 5, 887–891 (2015).

    ADS 
    Article 

    Google Scholar 

  • Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Campbell, T. K. F., Lantz, T. C., Fraser, R. H. & Hogan, D. High Arctic vegetation change mediated by hydrological conditions. Ecosystems 24, 106–121 (2021).

    CAS 
    Article 

    Google Scholar 

  • Chen, Y., Hu, F. S. & Lara, M. J. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems. Glob. Chang. Biol. 27, 652–663 (2021).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Martin, A. C., Jeffers, E. S., Petrokofsky, G., Myers-Smith, I. & Macias-Fauria, M. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environ. Res. Lett. 12, 085007 (2017).

    ADS 
    Article 

    Google Scholar 

  • Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 34, 416–421 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Klesse, S. et al. Continental-scale tree-ring-based projection of Douglas-fir growth: testing the limits of space-for-time substitution. Glob. Chang. Biol. 26, 5146–5163 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Rogers, H. S. et al. The total dispersal kernel: a review and future directions. AoB Plants 11, lz042 (2019).

    Article 

    Google Scholar 

  • Bullock, J. M. et al. Modelling spread of British wind-dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).

    Article 

    Google Scholar 

  • Shipley, B. R. et al. megaSDM: integrating dispersal and time‐step analyses into species distribution models. Ecography 2022, e05450 (2022).

    Article 

    Google Scholar 

  • Anadon‐Rosell, A., Talavera, M., Ninot, J. M., Carrillo, E. & Batllori, E. Seed production and dispersal limit treeline advance in the Pyrenees. J. Veg. Sci. 31, 981–994 (2020).

    Article 

    Google Scholar 

  • Standish, R. J., Cramer, V. A., Wild, S. L. & Hobbs, R. J. Seed dispersal and recruitment limitation are barriers to native recolonization of old-fields in western Australia. J. Appl. Ecol. 44, 435–445 (2007).

    Article 

    Google Scholar 

  • Kunstler, G. et al. Tree colonization of sub-Mediterranean grasslands: effects of dispersal limitation and shrub facilitation. Can. J. Res. 37, 103–115 (2007).

    Article 

    Google Scholar 

  • Reid, J. L., Holl, K. D. & Zahawi, R. A. Seed dispersal limitations shift over time in tropical forest restoration. Ecol. Appl. 25, 1072–1082 (2015).

    PubMed 
    Article 

    Google Scholar 

  • van Breugel, M. et al. Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales. J. Ecol. 107, 566–581 (2019).

    Article 

    Google Scholar 

  • Münzbergová, Z. & Herben, T. Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia 145, 1–8 (2005).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Alsos, I. G. et al. Frequent long-distance plant colonization in the changing Arctic. Science 316, 1606–1609 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Makoto, K. & Wilson, S. D. When and where does dispersal limitation matter in primary succession? J. Ecol. 107, 559–565 (2019).

    Article 

    Google Scholar 

  • Flannigan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 15, 549–560 (2009).

    ADS 
    Article 

    Google Scholar 

  • Higuera, P. E. et al. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change. PLoS ONE 3, e0001744 (2008).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. III & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Chang. Biol. 16, 1281–1295 (2010).

    ADS 
    Article 

    Google Scholar 

  • Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120490 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Klupar, I., Rocha, A. V. & Rastetter, E. B. Alleviation of nutrient co-limitation induces regime shifts in post-fire community composition and productivity in Arctic tundra. Glob. Chang. Biol. 27, 3324–3335 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Racine, C., Jandt, R., Meyers, C. & Dennis, J. Tundra fire and vegetation change along a hillslope on the Seward Peninsula, Alaska, USA Arct. Antarct. Alp. Res. 36, 1–10 (2004).

    Article 

    Google Scholar 

  • Narita, K. et al. Vegetation and permafrost thaw depth 10 years after a tundra fire in 2002, Seward Peninsula, Alaska. Arct. Antarct. Alp. Res. 47, 547–559 (2015).

    Article 

    Google Scholar 

  • Iwahana, G. et al. Geomorphological and geochemistry changes in permafrost after the 2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska. J. Geophys. Res. Earth Surf. 121, 1697–1715 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • CAVM Team. Circumpolar Arctic Vegetation (1:7,500,000 scale), Conservation of Arctic Flora and Fauna (CAFF) Map No. 1 (U.S. Fish and Wildlife Service, 2003).

  • Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).

    ADS 
    Article 

    Google Scholar 

  • Lantz, T. C., Marsh, P. & Kokelj, S. V. Recent shrub proliferation in the MacKenzie delta uplands and microclimatic implications. Ecosystems 16, 47–59 (2013).

    Article 

    Google Scholar 

  • Wilson, S. D. & Nilsson, C. Arctic alpine vegetation change over 20 years. Glob. Chang. Biol. 15, 1676–1684 (2009).

    ADS 
    Article 

    Google Scholar 

  • Mielke, K. P. et al. Disentangling drivers of spatial autocorrelation in species distribution models. Ecography 43, 1741–1751 (2020).

    Article 

    Google Scholar 

  • Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ims, R. A. & Henden, J.-A. Collapse of an arctic bird community resulting from ungulate-induced loss of erect shrubs. Biol. Conserv. 149, 2–5 (2012).

    Article 

    Google Scholar 

  • IPCC. Global warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. (Intergovernmental Panel on Climate Change, 2018).

  • Engler, R. et al. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32, 34–45 (2009).

    Article 

    Google Scholar 

  • Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).

    Article 

    Google Scholar 

  • Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Graae, B. J. et al. Strong microsite control of seedling recruitment in tundra. Oecologia 166, 565–576 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Frei, E. R. et al. Biotic and abiotic drivers of tree seedling recruitment across an alpine treeline ecotone. Sci. Rep. 8, 10894 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huebner, D. C. & Bret-Harte, M. S. Microsite conditions in retrogressive thaw slumps may facilitate increased seedling recruitment in the Alaskan Low Arctic. Ecol. Evol. 9, 1880–1897 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hargreaves, A. L. et al. Seed predation increases from the Arctic to the Equator and from high to low elevations. Sci. Adv. 5, eaau4403 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rupp, T. S., Starfield, A. M. & Chapin, F. S. A frame-based spatially explicit model of subarctic vegetation response to climatic change: comparison with a point model. Landsc. Ecol. 15, 383–400 (2000).

    Article 

    Google Scholar 

  • Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 7, 529–534 (2017).

    ADS 
    Article 

    Google Scholar 

  • Camac, J. S., Williams, R. J., Wahren, C.-H., Hoffmann, A. A. & Vesk, P. A. Climatic warming strengthens a positive feedback between alpine shrubs and fire. Glob. Chang. Biol. 23, 3249–3258 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Angers-Blondin, S., Myers-Smith, I. H. & Boudreau, S. Plant–plant interactions could limit recruitment and range expansion of tall shrubs into alpine and Arctic tundra. Polar Biol. 41, 2211–2219 (2018).

    Article 

    Google Scholar 

  • Mekonnen, Z. A., Riley, W. J. & Grant, R. F. Accelerated nutrient cycling and increased light competition will lead to 21st century shrub expansion in North American Arctic Tundra. J. Geophys. Res. Biogeosci. 123, 1683–1701 (2018).

    CAS 
    Article 

    Google Scholar 

  • Scherrer, D., Vitasse, Y., Guisan, A., Wohlgemuth, T. & Lischke, H. Competition and demography rather than dispersal limitation slow down upward shifts of trees’ upper elevation limits in the Alps. J. Ecol. 108, 2416–2430 (2020).

    Article 

    Google Scholar 

  • Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Myers-Smith, I. H., Thomas, H. J. D. & Bjorkman, A. D. Plant traits inform predictions of tundra responses to global change. N. Phytol. 221, 1742–1748 (2019).

    Article 

    Google Scholar 

  • Wang, J. A. et al. ABoVE: landsat-derived annual dominant land cover across ABoVE core domain, 1984–2014. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1691 (2019).

  • Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003. (2019).

  • Barnes, R. RichDEM: Terrain Analysis Software. (2016).

  • Loboda, T. V., Chen, D., Hall, J. V. & He, J. ABoVE: Landsat-derived Burn Scar dNBR across Alaska and Canada, 1985–2015. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1564 (2018).

  • James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: With Applications in R (Springer, 2013).

  • Thuiller, W., Georges, D., Gueguen, M., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. https://CRAN.R-project.org/package=biomod2 (2013).

  • R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (2013).

  • Bullock, J. M. et al. A synthesis of empirical plant dispersal kernels. J. Ecol. 105, 6–19 (2017).

    Article 

    Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Finley, A. O., Banerjee, S. & Gelfand, A. E. spBayes for Large univariate and multivariate point-referenced spatio-temporal data models. J. Stat. Softw. 63, 1–28 (2015).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ (2021).

  • Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data. (Chapman and Hall/CRC, 2003).

  • Liu, Y. et al. Dataset: dispersal and fire limit Arctic shrub expansion. Figshare https://doi.org/10.6084/m9.figshare.20097104.v1 (2022).

    Article 

    Google Scholar 

  • Liu, Y. et al. Code: dispersal and fire limit Arctic shrub expansion. Zenodo https://doi.org/10.5281/zenodo.6672698 (2022).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.)

    Comprehensive climatic suitability evaluation of peanut in Huang-Huai-Hai region under the background of climate change