in

Diversity and distribution of CO2-fixing microbial community along elevation gradients in meadow soils on the Tibetan Plateau

  • Zhou, J. Z. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110. https://doi.org/10.1038/nclimate1331 (2012).

  • Li, F. L., Liu, M., Li, Z. P., Jiang, C. Y., Han, F. X. & Che, Y. P.Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns. Appl. Soil Ecol. 64, 1–6. https://doi.org/10.1016/j.apsoil.2012.10.006 (2013).

  • Gryta, A., Frąc, M. & Oszust, K. The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge. Appl. Biochem. Biotechnol. 174, 1434–1443. https://doi.org/10.1007/s12010-014-1131-8 (2014).

  • Djukic, I., Zehetner, F., Mentler, A. & Gerzabek, M. H. Microbial community composition and activity in different Alpine vegetation zones. Soil Boil Biochem. 42, 155–161. https://doi.org/10.1016/j.soilbio.2009.10.006 (2010)

  • Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature. 436 (7054), 1157–1160. https://doi.org/10.1038/nature03891 (2015).

  • Zhang, X., Zhao, X. & Zhang, M. Functional diversity changes of microbial communities along a soil aquifer for reclaimed water recharge. FEMS Microbiol. Ecol. 80, 9–18. https://doi.org/10.1111/j.1574-6941.2011.01263.x (2012).

  • Hügler, M. & Sievert, S. M. Beyond the Calvin cycle: Autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3, 261–289. https://doi.org/10.1146/annurev-marine-120709-142712 (2010)

  • Falkowski, P. et al. The global carbon cycle: A test of our knowledge of earth as a system. Science 290, 291–296. https://doi.org/10.1126/science.290.5490.291 (2000).

  • Tabita, F. R. Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol. Rev. 52, 155–189. https://doi.org/10.1128/mr.52.2.155-189.1988 (1988).

  • Yuan, H., Ge, T., Chen, C., O’Donnell, A. G. & Wu, J. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl. Environ. Microbiol. 78, 2328–2336. https://doi.org/10.1128/AEM.06881-11 (2012).

  • Xu, H. H. & Tabita, F. R. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl. Environ. Microbiol. 62, 1913–1921. https://doi.org/10.1128/aem.62.6.1913-1921.1996 (1996).

  • Bräuer, S. L. et al. Dark carbon fixation in the Columbia River’s Estuarine Turbidity Maxima: Molecular characterization of red-type cbbL genes and measurement of DIC uptake rates in response to added electron donors. Estuaries Coast. 36(5), 1073–1083. https://doi.org/10.1007/s12237-013-9603-6 (2013).

  • Hanson, T. E. & Tabita, F. R. A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc. Natl. Acad. Sci. USA 98, 4397–4402. https://doi.org/10.1073/pnas.081610398 (2001).

  • Selesi, D., Pattis, I., Schmid, M., Kandeler, Ellen. & Hartmann, A. Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. J. Microbiol. Meth. 69, 497–503. https://doi.org/10.1016/j.mimet.2007.03.002 (2007).

  • Shanmugam, S. G.et al. Bacterial diversity patterns differ in soils developing in sub-tropical and cool-temperate ecosystems. Microb. Ecol. 73, 556–569. https://doi.org/10.1007/s00248-016-0884-8 (2017).

  • Guo, G., Kong, W., Liu, J., Zhao, J. & Du H. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau. Appl. Microbiol. Biotechnol. 99, 8765–8776. https://doi.org/10.1093/femsec/fiw160 (2015).

  • Bryant, J. A., Lamanna, C., Morlon, H., Kerkhoff, A. J., Enquist, B. J. & Green, J. L. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci U S A. 105, 11505–11511. https://doi.org/10.1073/pnas.0801920105 (2008)

  • Shen, C., Ni, Y., Liang, W. & Chu, H. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front. Microbiol. 6, 582. https://doi.org/10.3389/fmicb.2015.00582 (2015).

  • Lugo, M. A., Ferrero, M., Menoyo, E., Estévez, M.C., Sieriz, F. & Anton, A. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb. Ecol. 55, 705–713. https://doi.org/10.1007/s00248-007-9313-3 (2008).

  • Singh, D., Takahashi, K., & Adams, J. M. Elevational patterns in archaeal diversity on Mt. Fuji. Plos One. 7, e44494. https://doi.org/10.1371/journal.pone.0044494 (2012)

  • Miyamoto, Y., Nakano, T., Hattori, M. & Nara, K. The mid-domain effect in ectomycorrhizal fungi: Range overlap along an elevation gradient on Mount Fuji Japan. ISME J. 8(8), 1739–1746. https://doi.org/10.1038/ismej.2014.34 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, D., Lee-Cruz, L., Kim, W. S. & Kerfahi D. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. Soil. Boil. Biochem. 68, 140–149. https://doi.org/10.1016/j.soilbio.2013.09.027 (2014).

  • Qiu, J. China: The third pole. Nature 454, 393–396. https://doi.org/10.1038/454393a (2008)

  • Singh, D., Takahashi, K., Kim, M., Chun, J. & Adams, J. M. A hump-backed trend in bacterial diversity with elevation on mount Fuji, Japan. Microb. Ecol. 63, 429–437. https://doi.org/10.1007/s00248-011-9900-1 (2012).

  • Shen, C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Boil. Biochem. 57, 204–211. https://doi.org/10.1016/j.soilbio.2012.07.013 (2013).

  • Zhang, B., Chen, S. Y., Zhang, J. F. & Tian, C. Depth-related responses of soil microbial communities toexperimental warming in an alpine meadow on the Qinghai-Tibet Plateau. Eur. J. Soil Sci. 66, 496–504. https://doi.org/10.1111/ejss.12240 (2015).

  • Liu, J.et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Boil. Biochem. 70, 113–122. https://doi.org/10.1016/j.soilbio.2013.12.014 (2014)

  • Wu, X. D., Xu, H. Y., Liu, G. M., Ma, X., Mu, C. & Zhao L. Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan Plateau. Appl. Soil Ecol. 120, 81–88. https://doi.org/10.1016/j.apsoil.2017.08.001 (2017).

  • Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M.A taxa-area relationship for bacteria. Nature 432, 750–753. https://doi.org/10.1038/nature03073 (2004).

  • Fuks, D. et al. Relationships between heterotrophic bacteria and cyanobacteria in the northern Adriatic in relation to the mucilage phenomenon. Sci. Total Environ. 353, 178–188. https://doi.org/10.1016/j.scitotenv.2005.09.015 (2005).

  • Dziallas, C. & Grossart, H. P. Microbial interactions with the cyanobacterium Microcystis aeruginosa and their dependence on temperature. Mar Biol. 159, 2389–2398. https://doi.org/10.1007/s00227-012-1927-4 (2012).

  • Shen, H., Niu, Y., Xie, P., Tao, M. & Yang, X. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshw. Biol. 56, 1065–1080. https://doi.org/10.1111/j.1365-2427.2010.02551.x (2011).

  • Xun, L., Sun, M. L., Zhang, H. H., Xu, N. & Sun, G. Y. Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community. Microb. Biotechnol. 9, 293–304. https://doi.org/10.1111/1751-7915.12342 (2016).

  • Mohamed, H., Miloud, B., Zohra, F., García-Arenzana, J. M. & Rodríguez-Couto, S. Isolation and characterization of actinobacteria from Algerian Sahara soils with antimicrobial activities. Int. J. Mol. Cell Med. 6, 109–120. https://doi.org/10.22088/acadpub.BUMS.6.2.5 (2017).

  • Wang, J. T. et al. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microb. Ecol. 69, 135–145. https://doi.org/10.1007/s00248-014-0465-7 (2015).

  • Zhang, Y. G. et al. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Microb. Biotechnol. 8, 739–746. https://doi.org/10.1111/1751-7915.12288 (2015).

  • Li, G., Xu, G., Shen, C., Yong, T., Zhang, Y., Ma, K.Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline. Sci. China Life Sci. 59, 1177–1186. https://doi.org/10.1007/s11427-016-0072-6 (2016).

  • Liu, L., Hart M. M., Zhang, J., Cai, X. & Gai, J. Altitudinal distribution patterns of AM fungal assemblages in a Tibeta.n alpine grassland. FEMS Microbiol. Ecol. 91, fiv078. https://doi.org/10.1093/femsec/fiv078 (2015).

  • Xiao, K. Q. et al. Quantitative analyses of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbb L) in typical paddy soils. FEMS Microbiol. Ecol. 87, 89–101. https://doi.org/10.1111/1574-6941.12193 (2014).

  • Sardans, J., Peñuelas, J. & Estiarte, M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl. Soil Ecol. 39, 223–235. https://doi.org/10.1016/j.apsoil.2007.12.011 (2008).

    Article 

    Google Scholar 

  • Sidari, M., Ronzello, G., Vecchio, G. & Muscolo, A. Influence of slope aspects on soil chemical and biochemical properties in a Pinus Iaricio forest ecosystem of Aspromonte (Southern Italy). Eur. J. Soil Biol. 44, 364–372. https://doi.org/10.1016/j.ejsobi.2008.05.001(2008) (2008).

    CAS 
    Article 

    Google Scholar 

  • La, D., Zhang, Y. J., Pang, Y. Z., Cui, L. L., Liu J. & Suo, N. C.Numerical analysis on plant community and species richness patterns along an altitudinal gradient in the Mila Hill, Tibet. J. Tibet Univ. 12–20 (in Chinese) (2015).


  • Source: Ecology - nature.com

    Species- and site-specific circulating bacterial DNA in Subantarctic sentinel mussels Aulacomya atra and Mytilus platensis

    A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants