in

Diversity of rice rhizosphere microorganisms under different fertilization modes of slow-release fertilizer

  • Xin, F. et al. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Sci. Total Environ. 711, 135–183. https://doi.org/10.1016/j.scitotenv.2019.135183 (2020).

    CAS 
    Article 

    Google Scholar 

  • Du, B. et al. Deep fertilizer placement improves rice growth and yield in zero tillage. Appl. Ecol. Environ. Res. 16, 8045–8054. https://doi.org/10.15666/aeer/1606_80458054 (2018).

    Article 

    Google Scholar 

  • Ni, B., Liu, M., Lü, S., Xie, L. & Wang, Y. Environmentally friendly slow-release nitrogen fertilizer. J. Agric. Food Chem. 59, 10169–10175. https://doi.org/10.1021/jf202131z (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhu, C. et al. Mechanized transplanting with side deep fertilization increases yield and nitrogen use efficiency of rice in Eastern China. Sci. Rep. 9, 5653. https://doi.org/10.1038/s41598-019-42039-7 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677. https://doi.org/10.1038/nature01014 (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sharma, B. et al. Recycling of organic wastes in agriculture: An environmental perspective. Int. J. Environ. Res. 13, 409–429. https://doi.org/10.1007/s41742-019-00175-y (2019).

    CAS 
    Article 

    Google Scholar 

  • Pan, S. et al. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Res. 203, 139–149. https://doi.org/10.1016/j.fcr.2016.12.011 (2017).

    Article 

    Google Scholar 

  • Shahena, S., Rajan, M., Chandran, V. & Mathew, L. Conventional methods of fertilizer release. In Controlled Release Fertilizers for Sustainable Agriculture (eds Lewu, F. B. et al.) 1–24 (Academic Press, 2021). https://doi.org/10.1016/B978-0-12-819555-0.00001-7.

    Chapter 

    Google Scholar 

  • Wang, C. et al. Effects of different fertilization methods on ammonia volatilization from rice paddies. J. Clean. Prod. 295, 126299. https://doi.org/10.1016/j.jclepro.2021.126299 (2021).

    CAS 
    Article 

    Google Scholar 

  • Wu, Q. et al. Effects of different types of slow- and controlled-release fertilizers on rice yield. J. Integr. Agric. 20, 1503–1514. https://doi.org/10.1016/S2095-3119(20)63406-2 (2021).

    CAS 
    Article 

    Google Scholar 

  • Mahajan, G., Kumar, V. & Chauhan, B. S. Rice production in India. In Rice production worldwide (eds Chauhan, B. et al.) 53–91 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-47516-5_3.

    Chapter 

    Google Scholar 

  • Opoku-Kwanowaa, Y., Furaha, R. K., Yan, L. & Wei, D. Effects of planting field on groundwater and surface water pollution in China. Clean-Soil Air Water 48, 1900452. https://doi.org/10.1002/clen.201900452 (2020).

    CAS 
    Article 

    Google Scholar 

  • Lin, W. et al. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 14, e0217018. https://doi.org/10.1371/journal.pone.0217018 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sempeho, S. I., Kim, H. T., Mubofu, E. & Hilonga, A. Meticulous overview on the controlled release fertilizers. Adv. Chem. 1–16, 2014. https://doi.org/10.1155/2014/363071 (2014).

    Article 

    Google Scholar 

  • Trenkel, M. E. Controlled-Release and Stabilized Fertilizers in Agriculture 1–156 (International Fertilizer Industry Association, 1997).

    Google Scholar 

  • Lawrencia, D. et al. Controlled release fertilizers: A review on coating materials and mechanism of release. Plants 10, 238. https://doi.org/10.3390/plants10020238 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, S. et al. Studies on the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice (Oryza safiva L.). Agric. Sci. China 6, 586–596. https://doi.org/10.1016/S1671-2927(07)60087-X (2007).

    CAS 
    Article 

    Google Scholar 

  • Zheng, Y. et al. Effects of mixed controlled release nitrogen fertilizer with rice straw biochar on rice yield and nitrogen balance in northeast china. Sci. Rep. 10, 9452. https://doi.org/10.1038/s41598-020-66300-6 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ransom, C. J., Jolley, V. D., Blair, T. A., Sutton, L. E. & Hopkins, B. G. Nitrogen release rates from slow- and controlled-release fertilizers influenced by placement and temperature. PLoS ONE 15, e0234544. https://doi.org/10.1371/journal.pone.0234544 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soni, R., Kumar, V., Suyal, D. C., Jain, L. & Goel, R. Metagenomics of plant rhizosphere microbiome. In Understanding host-microbiome interactions—an omics approach (eds Singh, R. et al.) 193–205 (Springer, 2017). https://doi.org/10.1007/978-981-10-5050-3_12.

    Chapter 

    Google Scholar 

  • Kumar, A. Phosphate solubilizing bacteria in agriculture biotechnology: Diversity, mechanism and their role in plant growth and crop yield. Int. J. Adv. Res. 4, 116–124. https://doi.org/10.21474/IJAR01/111 (2016).

    Article 

    Google Scholar 

  • Arjun, J. K. Metagenomic analysis of bacterial diversity in the rice rhizosphere soil microbiome. Biotechnol. Bioinf. Bioeng 1, 361–367 (2011).

    Google Scholar 

  • Zhao, J. et al. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE 9, e85301. https://doi.org/10.1371/journal.pone.0085301 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, M. et al. Soil bacterial communities in three rice-based cropping systems differing in productivity. Sci. Rep. 10, 9867. https://doi.org/10.1038/s41598-020-66924-8 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayatsu, M. A novel function of controlled-release nitrogen fertilizers. Microbes Environ. 29, 121–122. https://doi.org/10.1264/jsme2.ME2902rh (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aslam, Z., Yasir, M., Yoon, H. S., Jeon, C. O. & Chung, Y. R. Diversity of the bacterial community in the rice rhizosphere managed under conventional and no-tillage practices. J. Microbiol. 51, 747–756. https://doi.org/10.1007/s12275-013-2528-8 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Min, J. et al. Mechanical side-deep fertilization mitigates ammonia volatilization and nitrogen runoff and increases profitability in rice production independent of fertilizer type and split ratio. J. Clean. Prod. 316, 128370. https://doi.org/10.1016/j.jclepro.2021.128370 (2021).

    CAS 
    Article 

    Google Scholar 

  • Ke, J. et al. Combined controlled-released nitrogen fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice. Agr. Ecosyst. Environ. 265, 402–412. https://doi.org/10.1016/j.agee.2018.06.023 (2018).

    CAS 
    Article 

    Google Scholar 

  • Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992. https://doi.org/10.1038/nature05202 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, P. et al. Different regulation of soil structure and resource chemistry under animal- and plant-derived organic fertilizers changed soil bacterial communities. Appl. Soil. Ecol. 165, 104020. https://doi.org/10.1016/j.apsoil.2021.104020 (2021).

    Article 

    Google Scholar 

  • Wang, J. et al. Wheat and rice growth stages and fertilization regimes alter soil bacterial community structure, but not diversity. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01207 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, Y., Zhang, X., Tu, S. & Lindström, K. Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. Eur. J. Soil Biol. 45, 239–246. https://doi.org/10.1016/j.ejsobi.2009.02.005 (2009).

    CAS 
    Article 

    Google Scholar 

  • Niu, J. et al. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate: Effects of different copping systems. J. Basic Microbiol. 57, 3–11. https://doi.org/10.1002/jobm.201600222 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wu, T., Qin, Y. & Li, M. Intercropping of tea (Camellia sinensis L.) and Chinese chestnut: Variation in the structure of rhizosphere bacterial communities. J. Soil Sci. Plant Nutr. 21, 2178–2190. https://doi.org/10.1007/s42729-021-00513-0 (2021).

    CAS 
    Article 

    Google Scholar 

  • Li, Y. C. et al. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. J. Appl. Microbiol. 121, 787–799. https://doi.org/10.1111/jam.13225 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bei, Q., Moser, G., Müller, C. & Liesack, W. Seasonality affects function and complexity but not diversity of the rhizosphere microbiome in European temperate grassland. Sci. Total Environ. 784, 147036. https://doi.org/10.1016/j.scitotenv.2021.147036 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • You, J., Das, A., Dolan, E. M. & Hu, Z. Ammonia-oxidizing archaea involved in nitrogen removal. Water Res. 43, 1801–1809. https://doi.org/10.1016/j.watres.2009.01.016 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chuang, S. et al. Potential effects of Rhodococcus qingshengii strain djl-6 on the bioremediation of carbendazim-contaminated soil and the assembly of its microbiome. J. Hazard. Mater. 414, 125496. https://doi.org/10.1016/j.jhazmat.2021.125496 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Luo, D. et al. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved. Sci. Total Environ. 788, 147773. https://doi.org/10.1016/j.scitotenv.2021.147773 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Premnath, N. et al. A crucial review on polycyclic aromatic hydrocarbons—Environmental occurrence and strategies for microbial degradation. Chemosphere 280, 130608. https://doi.org/10.1016/j.chemosphere.2021.130608 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Makino, A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 155, 125–129. https://doi.org/10.1104/pp.110.165076 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sun, L., Lu, Y., Yu, F., Kronzucker, H. J. & Shi, W. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol. 212, 646–656. https://doi.org/10.1111/nph.14057 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Coskun, D., Britto, D. T., Shi, W. & Kronzucker, H. J. How plant root exudates shape the nitrogen cycle. Trends Plant Sci. 22, 661–673. https://doi.org/10.1016/j.tplants.2017.05.004 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Qiang, S. et al. Deep placement of mixed controlled-release and conventional urea improves grain yield, nitrogen use efficiency of rainfed spring maize. Arch. Agronomy Soil Sci. 67, 1848–1858. https://doi.org/10.1080/03650340.2020.1817396 (2021).

    CAS 
    Article 

    Google Scholar 

  • Hou, P. et al. Deep fertilization with controlled-release fertilizer for higher cereal yield and N utilization in paddies: The optimal fertilization depth. Agronomy J. https://doi.org/10.1002/agj2.20772 (2021).

    Article 

    Google Scholar 

  • Zhu, S., Vivanco, J. M. & Manter, D. K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl. Soil. Ecol. 107, 324–333. https://doi.org/10.1016/j.apsoil.2016.07.009 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: The future of international education

    Advancing public understanding of sea-level rise