in

Diversity of soil faunal community as influenced by crop straw combined with different synthetic fertilizers in upland purple soil

[adace-ad id="91168"]
  • Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Sci. 42, S3–S15 (2006).

    Google Scholar 

  • Nielsen, U. N. et al. Response of belowground communities to short-term phosphorus addition in a phosphorus-limited woodland. Plant Soil 391, 321–331 (2015).

    Google Scholar 

  • Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity function relationships. Eur. J. Soil Sci. 62, 105–116 (2011).

    Google Scholar 

  • Lu, P. et al. Composition and structure of soil fauna communities and their relationships with environmental factors in copper mine waste rock after re-vegetation. Glob. Ecol. Conserv. 32, e01889 (2021).

    Google Scholar 

  • Lin, D. et al. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biol. Biochem. 136, 107519 (2019).

    Google Scholar 

  • Shao, Y., Zhang, W., Liu, S., Wang, X. & Fu, S. Diversity and function of soil fauna. Acta Ecol. Sin. (in Chinese) 35, 6614–6625 (2015).

    Google Scholar 

  • Voronin, A. N. & Kotyak, P. A. Influence of different agricultural practices on the number of soil fauna and productivity of agricultural crops. Taurida Herald Agrar. Sci. 3, 49–56 (2019).

    Google Scholar 

  • Zhu, X. & Zhu, B. Effect of different fertilization regimes on the main groups of soil fauna in cropland of purple soil. Sci. Agric. Sin. (in Chinese) 45, 911–920 (2015).

    Google Scholar 

  • Islam, M. U., Guo, Z., Jiang, F. & Peng, X. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crop Res. 279, 108447 (2022).

    Google Scholar 

  • Cui, H. et al. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. Eur. J. Agron. 133, 126436 (2022).

    Google Scholar 

  • Wang, X. et al. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop Res. 218, 11–17 (2018).

    Google Scholar 

  • Gai, X. et al. Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain. Sci. Total Environ. 650, 2251–2259 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • Wang, W. et al. Effects of different fertility-building practices on the meso-micro soil fauna communities in a black soil area. Chin. J. Appl. Environ. Biol. (in Chinese) 25, 1344–1351 (2019).

    Google Scholar 

  • Kautz, T., López-Fando, C. & Ellmer, F. Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in Central Spain. Appl. Soil Ecol. 33, 278–285 (2006).

    Google Scholar 

  • Zhang, T. et al. Effects of straw returning on soil meso-and micro-arthropod community diversity in wheat-maize fields in North China. Chin. J. Appl. Environ. Biol. (in Chinese) 25, 70–75 (2019).

    Google Scholar 

  • Yang, P., Wang, H. & Yue, J. Ecological distribution of middle-small-size soil faunas under conservation tillage and straw mulch conditions. Res. Soil Water Conserv. (in Chinese) 20, 145–150 (2013).

    Google Scholar 

  • Zhu, Q., Zhu, A., Zhang, J., Zhang, H. & Zhang, C. Effect of conservation tillage on soil fauna in wheat field of Huang-huai-hai Plain. J. Agro Environ. Sci. (in Chinese) 28, 1766–1772 (2009).

    Google Scholar 

  • Cao, Z. et al. Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Appl. Soil Ecol. 49, 131–138 (2011).

    Google Scholar 

  • Li, Y., Xu, Z., Xu, H., Chen, Y. & Ruan, H. Review of the effect of fertilizer application on the soil fauna in soil ecosystems. J. Nanjing For. Univ. Nat. Sci. Ed. (in Chinese) 42, 179–184 (2018).

    Google Scholar 

  • McGee, K. M. & Eaton, W. D. A comparison of the wet and dry season DNA-based soil invertebrate community characteristics in large patches of the bromeliad Bromelia pinguin in a primary forest in Costa Rica. Appl. Soil Ecol. 87, 99–107 (2015).

    Google Scholar 

  • Zhu, B., Wang, T., You, X. & Gao, M. Nutrient release from weathering of purplish rocks in the Sichuan Basin, China. Pedosphere 18, 257–264 (2008).

    Google Scholar 

  • Zhu, B. et al. Measurements of nitrate leaching from a hillslope cropland in the Central Sichuan Basin, China. Soil Sci. Soc. Am. J. 73, 1419–1426 (2009).

    ADS 

    Google Scholar 

  • He, Y. Purple Soil of China Part (II) (Science Press, 2003).

    Google Scholar 

  • Huang, R. et al. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric. Ecosyst. Environ. 265, 576–586 (2018).

    Google Scholar 

  • Zhu, X., Dong, Z., Kuang, F. & Zhu, B. Effects of fertilization regimes on soil faunal communities in cropland of purple soil. Acta Ecol. Sin. (in Chinese) 33, 464–474 (2013).

    Google Scholar 

  • Querner, P. & Bruckner, A. Combining pitfall traps and soil samples to collect Collembola for site scale biodiversity assessments. Appl. Soil. Ecol. 45, 293–297 (2010).

    Google Scholar 

  • Smith, M. A. et al. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. PNAS 105, 12359–12364 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, C. A. et al. Meiofaunal diversity in the Atlantic Forest soil: A quest for nematodes in a native reserve using eukaryotic metabarcoding analysis. For. Ecol. Manag. 453, 117591 (2019).

    Google Scholar 

  • Ding, J. et al. Effects of long-term fertilization on the associated microbiota of soil collembolan. Soil Biol. Biochem. 130, 141–149 (2019).

    Google Scholar 

  • Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).

    Google Scholar 

  • McGee, K. M., Porter, T. M., Wright, M. & Hajibabaei, M. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci. Rep. 10, 18429 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Porter, T. M. et al. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. Sci. Rep. 9, 18218 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morise, H., Miyazaki, E., Yoshimitsu, S. & Eki, T. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing. PLoS One 7, e51785 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, 46 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dopheide, A. et al. Estimating the biodiversity of terrestrial invertebrates on a forested island using DNA barcodes and metabarcoding data. Ecol. Appl. 29, e01877 (2019).

    PubMed 

    Google Scholar 

  • Watts, C. et al. DNA metabarcoding as a tool for invertebrate community monitoring: A case study comparison with conventional techniques. Austral Entomol. 58, 675–686 (2019).

    Google Scholar 

  • Kvist, S. Barcoding in the dark? A critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge. Mol. Phylogenet. Evol. 69, 39–45 (2013).

    PubMed 

    Google Scholar 

  • Shao, Y. et al. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biol. Biochem. 40, 2040–2046 (2008).

    Google Scholar 

  • Neher, D. A., Wu, J., Barbercheck, M. E. & Anas, O. Ecosystem type affects interpretation of soil nematode community measures. Appl. Soil Ecol. 30, 47–64 (2005).

    Google Scholar 

  • Yang, C., Ji, Y., Wang, X., Yang, C. & Yu, D. W. Testing three pipelines for 18S rDNA-based metabarcoding of soil faunal diversity. Sci. China Life Sci. 56, 73–81 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Horton, D. J., Kershner, M. W. & Blackwood, C. B. Suitability of PCR primers for characterizing invertebrate communities from soil and leaf litter targeting metazoan 18S ribosomal or cytochrome oxidase I (COI) genes. Eur. J. Soil Biol. 80, 43–48 (2017).

    Google Scholar 

  • Geisen, S., Laros, I., Vizcaino, A., Bonkowski, M. & de Groot, G. A. Not all are free-living: High-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa. Mol. Ecol. 24, 4556–4569 (2015).

    PubMed 

    Google Scholar 

  • Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14, 1160–1170 (2014).

    PubMed 

    Google Scholar 

  • Kitagami, Y. & Matsuda, Y. High-throughput sequencing covers greater nematode diversity than conventional morphotyping on natural cedar forests in Yakushima Island, Japan. Eur. J. Soil Biol. 112, 103432 (2022).

    Google Scholar 

  • Juliet, W. K., Lisa, B. F., Lamers, J. P. A., Till, S. & Christian, B. Soil fertility and biodiversity on organic and conventional smallholder farms in Kenya. Appl. Soil Ecol. 134, 85–97 (2019).

    Google Scholar 

  • Li, Q., Zhou, D. & Chen, X. The accumulation decomposition and ecological effects of above-ground litter in terrestrial ecosystem. Acta Ecol. Sin. (in Chinese) 34, 3807–3819 (2014).

    Google Scholar 

  • Tie, L. et al. Phosphorus addition reverses the negative effect of nitrogen addition on soil arthropods during litter decomposition in a subtropical forest. Sci. Total. Environ. 781, 146786 (2021).

    ADS 

    Google Scholar 

  • Nottingham, A. T., Turner, B. L., Stott, A. W. & Tanner, E. V. J. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol. Biochem. 80, 26–33 (2015).

    Google Scholar 

  • Xiao, Q. et al. Impact of soil thickness on productivity and nitrate leaching from sloping cropland in the upper Yangtze River Basin. Agric. Ecosyst. Environ. 311, 107266 (2021).

    Google Scholar 

  • Zhu, X. & Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Till. Res. 146, 39–46 (2015).

    Google Scholar 

  • Wei, K., Wang, J., Dong, Z., Tang, J. & Zhu, B. The combined application of organic materials and chemical fertilizer mitigates the deterioration of the trophic structure of nematode community by increasing soil N concentration. J. Soil Sci. Plant Nutr. 21, 2530–2537 (2021).

    Google Scholar 

  • Kuo, S. Phosphorus. In Methods of Soil Analysis (ed. Sparks, D. L.) 869–919 (Soil Science Society of America, 1996).

    Google Scholar 

  • Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis (ed. Sparks, D. L.) 960–1010 (ASA and SSSA, 1996).

    Google Scholar 

  • Lu, R. Analysis of Soil Agro-Chemistry (Chinese Agricultural Science and Technology Press, 2000).

    Google Scholar 

  • Page, A. L., Miller, R. H. & Keeney, D. R. Chemical and microbiological properties. In Methods of Soil Analysis (ASA and SSSA, 1982).

    Google Scholar 

  • Olsen, S. R., Cole, C. U., Watanabe, F. S. & Deen, L. A. Estimation of Available Phosphorus in Soil by Extracting with Sodium Bicarbonate (USDA Circular 939, 1954).

    Google Scholar 

  • Townshend, J. L. A modification and evaluation of the apparatus for the Oostenbrink direct cottonwool filter extraction method. Nematologica 9, 106–110 (1963).

    Google Scholar 

  • Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).

    PubMed 

    Google Scholar 

  • Yang, T., Song, X., Xu, X., Zhou, C. & Shi, A. A comparative analysis of spider prey spectra analyzed through the next-generation sequencing of individual and mixed DNA samples. Ecol. Evol. 11, 15444–15454 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, H. & Jiang, W. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front. Microbiol. 5, 508 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    PubMed 

    Google Scholar 

  • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. http://www.r-project.org (2020).

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    MathSciNet 
    MATH 

    Google Scholar 

  • Margalef, R. Perspectives in Ecological Theory 111–119 (The University of Chicago Press, 1970).

    Google Scholar 

  • Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 88, 131–144 (1966).

    ADS 

    Google Scholar 

  • Zhou, Y. et al. Species richness and phylogenetic diversity of seed plants across vegetation zones of Mount Kenya, East Africa. Ecol. Evol. 8, 8930–8939 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biol. Biochem. 127, 22–30 (2018).

    Google Scholar 

  • Yang, K. et al. Responses of soil ammonia-oxidizing bacteria and archaea diversity to N, P and NP fertilization: Relationships with soil environmental variables and plant community diversity. Soil Biol. Biochem. 145, 107795 (2020).

    Google Scholar 

  • Zhang, S., Li, Q., Lü, Y., Zhang, X. & Liang, W. Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biol. Biochem. 62, 147–156 (2013).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT PhD students shed light on important water and food research

    Surprising effects of cascading higher order interactions