in

Drivers of avian habitat use and detection of backyard birds in the Pacific Northwest during COVID-19 pandemic lockdowns

  • Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 3, 564–570 (2020).

    Article 

    Google Scholar 

  • Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: A review. Landsc. Urban Plan. 74, 46–69 (2006).

    Article 

    Google Scholar 

  • Rosenberg, K. V. et al. Decline of the North American avifauna. Science (1979) 366, 120–124 (2019).

    CAS 

    Google Scholar 

  • Isaksson, C. Impact of Urbanization on Birds https://doi.org/10.1007/978-3-319-91689-7_13 (2018).

    Article 

    Google Scholar 

  • Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760. https://doi.org/10.1126/science.1150195 (2008).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pipoly, I. et al. Extreme hot weather has stronger impacts on Avian reproduction in forests than in cities. Front. Ecol. Evol. 10, 1 (2022).

    Article 

    Google Scholar 

  • Newberry, G. N., O’Connor, R. S. & Swanson, D. L. Urban rooftop-nesting Common Nighthawk chicks tolerate high temperatures by hyperthermia with relatively low rates of evaporative water loss. Condor 123, 016 (2021).

    Article 

    Google Scholar 

  • da Silva, A., Valcu, M. & Kempenaers, B. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos. Trans. R. Soc. B: Biol. Sci. 370, 126 (2015).

    Article 

    Google Scholar 

  • Welbers, A. A. M. H. et al. Artificial light at night reduces daily energy expenditure in breeding great tits (Parus major). Front. Ecol. Evol. 5, 55 (2017).

    Article 

    Google Scholar 

  • van Doren, B. M. et al. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl. Acad. Sci. USA. 114, 11175–11180 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Miller, M. W. Apparent effects of light pollution on singing behavior of American Robins. Condor 108, 130–139 (2006).

    Article 

    Google Scholar 

  • Nemeth, E. & Brumm, H. Birds and anthropogenic noise: Are urban songs adaptive?. Am. Nat. 176, 465 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Nemeth, E. et al. Bird song and anthropogenic noise: Vocal constraints may explain why birds sing higher-frequency songs in cities. Proc. R. Soc. B: Biol. Sci. 280, 20122798 (2013).

    Article 

    Google Scholar 

  • Senzaki, M., Yamaura, Y., Francis, C. D. & Nakamura, F. Traffic noise reduces foraging efficiency in wild owls. Sci. Rep. 6, 1–7 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ortega, C. P. Effects of noise pollution on birds: A brief review of our knowledge. Ornithol. Monogr. 74, 6–22 (2012).

    Article 

    Google Scholar 

  • Sanderfoot, O. V. & Holloway, T. Air pollution impacts on avian species via inhalation exposure and associated outcomes. Environ. Res. Lett. 12, 832. https://doi.org/10.1088/1748-9326/aa8051 (2017).

    CAS 
    Article 

    Google Scholar 

  • Eeva, T. & Lehikoinen, E. Egg shell quality, clutch size and hatching success of the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca) in an air pollution gradient. Oecologia 102, 312–323 (1995).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Tablado, Z. et al. Effect of human disturbance on bird telomere length: An experimental approach. Front. Ecol. Evol. 9, 1 (2022).

    Article 

    Google Scholar 

  • Kang, W., Minor, E. S., Park, C. R. & Lee, D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst. 18, 857–870 (2015).

    Article 

    Google Scholar 

  • Blair, R. B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 6, 506–519 (1996).

    Article 

    Google Scholar 

  • Estela, F. A. et al. Changes in the nocturnal activity of birds during the covid–19 pandemic lockdown in a neotropical city. Anim. Biodivers. Conserv. 44, 1 (2021).

    Google Scholar 

  • Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 108665. https://doi.org/10.1016/j.biocon.2020.108665 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 4, 1156–1159. https://doi.org/10.1038/s41559-020-1237-z (2020).

    Article 
    PubMed 

    Google Scholar 

  • Czech, K., Davy, A. & Wielechowski, M. Does the covid-19 pandemic change human mobility equally worldwide? Cross-country cluster analysis. Economies 9, 182 (2021).

    Article 

    Google Scholar 

  • Galeazzi, A. et al. Human mobility in response to COVID-19 in France, Italy and UK. Sci. Rep. 11, 1 (2021).

    Article 
    CAS 

    Google Scholar 

  • Joshi, Y. V. & Musalem, A. Lockdowns lose one third of their impact on mobility in a month. Sci. Rep. 11, 1 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dobbie, L. J., Hydes, T. J., Alam, U., Tahrani, A. & Cuthbertson, D. J. The impact of the COVID-19 pandemic on mobility trends and the associated rise in population-level physical inactivity: Insights From International Mobile Phone and National Survey Data. Front. Sports Active Living 4, 80 (2022).

    Article 

    Google Scholar 

  • Basu, B. et al. Investigating changes in noise pollution due to the COVID-19 lockdown: The case of Dublin, Ireland. Sustain. Cities Soc. 65, 102597 (2021).

    Article 

    Google Scholar 

  • Lecocq, T. et al. Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science (1979) 369, 1338 (2020).

    Google Scholar 

  • Terry, C., Rothendler, M., Zipf, L., Dietze, M. C. & Primack, R. B. Effects of the COVID-19 pandemic on noise pollution in three protected areas in metropolitan Boston (USA). Biol. Cons. 256, 109039 (2021).

    Article 

    Google Scholar 

  • Venter, Z. S., Aunan, K., Chowdhury, S. & Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc Natl Acad Sci U S A 117, 18984 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Archer, C. L., Cervone, G. & Golbazi, M. Changes in air quality and human mobility in the US during the COVID-19 pandemic. Bull. Atmosp. Sci. Technol. 1, 491–541. https://doi.org/10.1007/s42865-020-00019-0 (2020).

    Article 

    Google Scholar 

  • Jiang, Z. et al. Modeling the impact of COVID-19 on air quality in Southern California: Implications for future control policies. Atmosp. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2020-1197 (2020).

  • Shi, Z. et al. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 7, 6696 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Hentati-Sundberg, J., Berglund, P. A., Hejdström, A. & Olsson, O. COVID-19 lockdown reveals tourists as seabird guardians. Biol. Conserv. 254, 108950 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Derryberry, E. P., Phillips, J. N., Derryberry, G. E., Blum, M. J. & Luther, D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science (1979) 370, 575 (2020).

    CAS 

    Google Scholar 

  • Schrimpf, M. B. et al. Reduced human activity during COVID-19 alters avian land use across North America. Sci. Adv. 7, 5073 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2252 (2002).

    Article 

    Google Scholar 

  • Gordo, O., Brotons, L., Herrando, S. & Gargallo, G. Rapid behavioural response of urban birds to COVID-19 lockdown. Proc. R. Soc. B: Biol. Sci. 288, 20202513 (2021).

    CAS 
    Article 

    Google Scholar 

  • Johnson, D. H. In defense of indices: The Case of Bird Surveys. J. Wildl. Manag. 72, 857–868 (2008).

    Article 

    Google Scholar 

  • Sanderfoot, O. V. & & Gardner, B.,. Wildfire smoke affects detection of birds in Washington State. Ornithol. Appl. 123, 28 (2021).

    Google Scholar 

  • Sumasgutner, P. et al. Raptor research during the COVID-19 pandemic provides invaluable opportunities for conservation biology. Biol. Conserv. 260, 109149 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Crimmins, T. M., Posthumus, E., Schaffer, S. & Prudic, K. L. COVID-19 impacts on participation in large scale biodiversity-themed community science projects in the United States. Biol. Conserv. 256, 109017 (2021).

    Article 

    Google Scholar 

  • Basile, M., Russo, L. F., Russo, V. G., Senese, A. & Bernardo, N. Birds seen and not seen during the COVID-19 pandemic: The impact of lockdown measures on citizen science bird observations. Biol. Conserv. 256, 109079 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kishimoto, K. & Kobori, H. COVID-19 pandemic drives changes in participation in citizen science project “City Nature Challenge” in Tokyo. Biol. Conserv. 255, 109001 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282 (2009).

    Article 

    Google Scholar 

  • Pacifici, K., Simons, T. R. & Pollock, K. H. Effects of vegetation and background noise on the detection process in auditory avian point-count surveys. Auk 125, 600–607 (2008).

    Article 

    Google Scholar 

  • Mitchell, M. S. et al. Testing a priori hypotheses improves the reliability of wildlife research. J. Wildl. Manag. 82, 1568. https://doi.org/10.1002/jwmg.21568 (2018).

    Article 

    Google Scholar 

  • Sells, S. N. et al. Increased scientific rigor will improve reliability of research and effectiveness of management. J. Wildl. Manag. 82, 485. https://doi.org/10.1002/jwmg.21413 (2018).

    Article 

    Google Scholar 

  • Strimas-Mackey, M., E. Miller, and W. Hochachka. auk: eBird Data Extraction and Processing with AWK. R package version 0.3.0. (2018) https://cornelllabofornithology.github.io/auk/

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020). https://www.R-project.org/.

  • U.S. Environmental Protection Agency (EPA). Air Quality System Data Mart (2020). https://www.epa.gov/airdata

  • Karagulian, F. et al. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 120, 475. https://doi.org/10.1016/j.atmosenv.2015.08.087 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ito, K., Thurston, G. D. & Silverman, R. A. Characterization of PM25, gaseous pollutants, and meteorological interactions in the context of time-series health effects models. J. Exposure Sci. Environ. Epidemiol. 17, S45–S60 (2007).

    CAS 
    Article 

    Google Scholar 

  • Google LLC “Google COVID-19 Community Mobility Reports”. https://www.google.com/covid19/mobility/ Accessed: November 1, 2020.

  • Waze “Global Mobility Report”. https://www.waze.com Accessed: May 22, 2020.

  • Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. R package version 1.17 (2019). https://CRAN.R-project.org/package=ncdf4

  • Esri “USA NLCD Land Cover” [imagery layer]. Esri Inc (2019). https://www.arcgis.com/home/item.html?id=3ccf118ed80748909eb85c6d262b426f.

  • Esri Inc. ArcMap (Version 10.8.1). Esri Inc. Redlands, California, USA (2020). https://desktop.arcgis.com/en/arcmap/.

  • Fiske, I. & Chandler, R. unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43(10), 1–23 (2011).

    Article 

    Google Scholar 

  • Efford, M. G. & Dawson, D. K. Occupancy in continuous habitat. Ecosphere 3, 1 (2012).

    Article 

    Google Scholar 

  • Lee, B. P. Y. H., Davies, Z. G. & Struebig, M. J. Smoke pollution disrupted biodiversity during the 2015 El Niño fires in Southeast Asia. Environ. Res. Lett. 12, 094022 (2017).

    ADS 
    Article 

    Google Scholar 

  • Leonard, R. J. & Hochuli, D. F. Exhausting all avenues: why impacts of air pollution should be part of road ecology. Front. Ecol. Environ. 15, 443. https://doi.org/10.1002/fee.1521 (2017).

    Article 

    Google Scholar 

  • Plummer, K. E., Risely, K., Toms, M. P. & Siriwardena, G. M. The composition of British bird communities is associated with long-term garden bird feeding. Nat. Commun. 10, 1 (2019).

    CAS 
    Article 

    Google Scholar 

  • Cleary, G. P. et al. Avian assemblages at bird baths: A comparison of urban and rural bird baths in Australia. PLoS ONE 11, e0150899 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bailey, L. L., Mackenzie, D. I. & Nichols, J. D. Advances and applications of occupancy models. Methods Ecol. Evol. 5, 1269 (2014).

    Article 

    Google Scholar 

  • Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 1. https://doi.org/10.1098/rsbl.2018.0082 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Long-term study on survival and development of successive generations of Mytilus galloprovincialis cryopreserved larvae

    Passion projects prepare to launch