Schimel, D. S. Drylands in the Earth system. Science 327, 418–419 (2010).
Google Scholar
Whitford, W. G. Ecology of Desert Systems (Academic Press, 2002).
D’Odorico, P., Porporato, A. & Runyan, C. W. Dryland Ecohydrology Vol. 9 (Springer, 2019). A comprehensive introduction to dryland ecohydrology.
Lal, R. Carbon cycling in global drylands. Curr. Clim. Change Rep. 5, 221–232 (2019).
Google Scholar
Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015). Illustrates the role drylands play in determining the variability and long-term trend of the terrestrial CO2 sink.
Google Scholar
Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014). Illustrates the role drylands play in determining the variability of the terrestrial CO2 sink.
Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016). A comprehensive review of dryland structure and functioning.
Google Scholar
Wang, L., Kaseke, K. F. & Seely, M. K. Effects of non-rainfall water inputs on ecosystem functions. WIREs Water 4, e1179 (2017). Highlights the often-ignored role of non-rainfall water inputs to dryland ecosystem dynamics.
Google Scholar
Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).
Google Scholar
Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).
Google Scholar
IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
Gonsamo, A. et al. Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob. Change Biol. 27, 3336–3349 (2021).
Google Scholar
Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).
Google Scholar
Brookshire, E. J., Stoy, P. C., Currey, B. & Finney, B. The greening of the Northern Great Plains and its biogeochemical precursors. Glob. Change Biol. 26, 5404–5413 (2020).
Google Scholar
Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).
Google Scholar
Ravi, S. et al. Biological invasions and climate change amplify each other’s effects on dryland degradation. Glob. Change Biol. 28, 285–295 (2022).
Google Scholar
Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere https://doi.org/10.1890/ES15-00203.1 (2015).
Yu, K. et al. The competitive advantage of a constitutive CAM species over a C4 grass species under drought and CO2 enrichment. Ecosphere 10, e02721 (2019).
Google Scholar
Fensholt, R. et al. in Remote Sensing Time Series (eds Kuenzer, C. et al.) 183–292 (Springer, 2015).
Andela, N., Liu, Y., Van Dijk, A., De Jeu, R. & McVicar, T. Global changes in dryland vegetation dynamics (1988-2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).
Google Scholar
Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).
Google Scholar
Venter, Z., Cramer, M. & Hawkins, H.-J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).
Google Scholar
Ukkola, A. M. et al. Annual precipitation explains variability in dryland vegetation greenness globally but not locally. Glob. Change Biol. 27, 4367–4380 (2021).
Google Scholar
Zhang, W., Brandt, M., Tong, X., Tian, Q. & Fensholt, R. Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel. Biogeosciences 15, 319–330 (2018).
Google Scholar
Fensholt, R. & Rasmussen, K. Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 115, 438–451 (2011).
Google Scholar
Zhang, W. et al. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nat. Commun. 10, 671 (2019).
Google Scholar
Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).
Google Scholar
Hufkens, K. et al. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nat. Clim. Change 6, 710–714 (2016).
Google Scholar
Choler, P., Sea, W., Briggs, P., Raupach, M. & Leuning, R. A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands. Biogeosciences 7, 907–920 (2010).
Google Scholar
Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).
Google Scholar
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
Google Scholar
Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021). Provides a comprehensive analysis on the dryland expansion debates.
Google Scholar
Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. USA 113, 12757–12762 (2016).
Google Scholar
Daramola, M. T. & Xu, M. Recent changes in global dryland temperature and precipitation. Int. J. Climatol. 42, 1267–1282 (2022).
Google Scholar
Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).
Google Scholar
Berg, A. & Sheffield, J. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4, 180–191 (2018).
Google Scholar
Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021). This study found that vegetation growth in the Northern Hemisphere is becoming increasingly water limited.
Google Scholar
Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob. Change Biol. 25, 269–276 (2019).
Google Scholar
D’Odorico, P. & Bhattachan, A. Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security. Phil. Trans. R. Soc. B 367, 3145–3157 (2012).
Google Scholar
Hou, E. et al. Divergent responses of primary production to increasing precipitation variability in global drylands. Glob. Change Biol. 27, 5225–5237 (2021).
Google Scholar
Ritter, F., Berkelhammer, M. & Garcia-Eidell, C. Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Commun. Earth Environ. 1, 34 (2020).
Google Scholar
Ridolfi, L., D’Odorico, P. & Laio, F. Noise-Induced Phenomena in the Environmental Sciences (Cambridge Univ. Press, 2011).
Zeng, N. & Neelin, J. D. The role of vegetation–climate interaction and interannual variability in shaping the African savanna. J. Clim. 13, 2665–2670 (2000).
Google Scholar
Borgogno, F., D’Odorico, P., Laio, F. & Ridolfi, L. Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophysics 47, RG1005 (2009).
Google Scholar
van de Koppel, J. & Rietkerk, M. Spatial interactions and resilience in arid ecosystems. Am. Nat. 163, 113–121 (2004).
Google Scholar
Lefever, R. & Lejeune, O. On the origin of tiger bush. Bull. Math. Biol. 59, 263–294 (1997).
Google Scholar
Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015). Highlights the role of precipitation varibility in plant community composition in drylands.
Google Scholar
Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).
Google Scholar
Good, S. P. & Caylor, K. K. Climatological determinants of woody cover in Africa. Proc. Natl Acad. Sci. USA 108, 4902–4907 (2011).
Google Scholar
Lu, X., Wang, L., Pan, M., Kaseke, K. F. & Li, B. A multi-scale analysis of Namibian rainfall over the recent decade—comparing TMPA satellite estimates and ground observations. J. Hydrol. Reg. Stud. 8, 59–68 (2016).
Google Scholar
Franz, T., Caylor, K., Nordbotten, J., Rodriguez-Itubre, I. & Celia, M. An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems. Adv. Water Res. 33, 215–230 (2010).
Google Scholar
Knapp, A. K., Chen, A., Griffin-Nolan, R. J., Baur, L. E. & Smith, M. Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc. Natl Acad. Sci. USA 117, 201922030 (2020).
Google Scholar
Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2016).
Google Scholar
Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004). Illustrates the close linkage between water pulses and biogeochemical cycles in drylands.
Google Scholar
Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).
Google Scholar
Collins, S. L. et al. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 397–419 (2014).
Google Scholar
Barnard, R. L., Blazewicz, S. J. & Firestone, M. K. Rewetting of soil: revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 147, 107819 (2020).
Google Scholar
Manzoni, S. et al. Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration. Biogeosciences 17, 4007–4023 (2020).
Google Scholar
Leizeaga, A., Meisner, A., Rousk, J. & Bååth, E. Repeated drying and rewetting cycles accelerate bacterial growth recovery after rewetting. Biol. Fertil. Soils 58, 365–374 (2022).
Google Scholar
Gao, D. et al. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: a meta-analysis. Soil Biol. Biochem. 148, 107896 (2020).
Google Scholar
Homyak, P. M., Allison, S. D., Huxman, T. E., Goulden, M. L. & Treseder, K. K. Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J. Geophys. Res. Biogeosci. 122, 3260–3272 (2017).
Google Scholar
Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).
Google Scholar
Nippert, J. B., Knapp, A. K. & Briggs, J. M. Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecol. 184, 65–74 (2006).
Google Scholar
Kaseke, K. F., Wang, L. & Seely, M. K. Nonrainfall water origins and formation mechanisms. Sci. Adv. 3, e1603131 (2017).
Google Scholar
Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. N. Phytol. 219, 1156–1169 (2018).
Google Scholar
Feng, T. et al. Dew formation reduction in global warming experiments and the potential consequences. J. Hydrol. 593, 125819 (2021).
Google Scholar
Gerlein-Safdi, C. et al. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316 (2018).
Google Scholar
Tomaszkiewicz, M., Abou Najm, M., Beysens, D., Alameddine, I. & El-Fadel, M. Dew as a sustainable non-conventional water resource: a critical review. Environ. Rev. 23, 425–442 (2015).
Google Scholar
Fessehaye, M. et al. Fog-water collection for community use. Renew. Sustain. Energy Rev. 29, 52–62 (2014).
Google Scholar
Kidron, G. J. Angle and aspect dependent dew and fog precipitation in the Negev desert. J. Hydrol. 301, 66–74 (2005).
Google Scholar
Chiodi, A. M., Potter, B. E. & Larkin, N. K. Multi-decadal change in western US nighttime vapor pressure deficit. Geophys. Res. Lett. 48, e2021GL092830 (2021).
Google Scholar
Tomaszkiewicz, M. et al. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total Environ. 566, 1339–1348 (2016).
Google Scholar
Walker, B. H., Ludwig, D., Holling, C. S. & Peterman, R. N. Stability of semi-arid savanna grazing systems. J. Ecol. 69, 473–498 (1981).
Google Scholar
Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990).
Google Scholar
D’Odorico, P., Bhattachan, A., Davis, K., Ravi, S. & Runyan, C. Global desertification: drivers and feedbacks. Adv. Water Res. 51, 326–344 (2013).
Google Scholar
Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007). Highlights the loss of ecosystem services as a result of dryland desertification.
Google Scholar
Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol. Lett. 14, 709–722 (2011). Provides a compehenseive analysis of the shrub enrochment effects on dryland functions.
Google Scholar
IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).
Yang, H. et al. Tropical expansion driven by poleward advancing midlatitude meridional temperature gradients. J. Geophys. Res. Atmos. 125, e2020JD033158 (2020).
Google Scholar
Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).
Google Scholar
Ayyad, M. A., Fakhry, A. M. & Moustafa, A.-R. A. Plant biodiversity in the Saint Catherine area of the Sinai peninsula. Egypt. Biodivers. Conserv. 9, 265–281 (2000).
Google Scholar
Global Land Outlook 2017 (UNCCD, 2017).
Van Ittersum, M. K. et al. Can sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964–14969 (2016).
Google Scholar
Redo, D., Aide, T. M. & Clark, M. L. Vegetation change in Brazil’s dryland ecoregions and the relationship to crop production and environmental factors: Cerrado, Caatinga, and Mato Grosso, 2001–2009. J. Land Use Sci. 8, 123–153 (2013).
Google Scholar
Meyfroidt, P., Lambin, E. F., Erb, K.-H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444 (2013).
Google Scholar
Rulli, M. C., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).
Google Scholar
Müller, M. F. et al. Impact of transnational land acquisitions on local food security and dietary diversity. Proc. Natl Acad. Sci. USA 118, e2020535118 (2021).
Google Scholar
Chiarelli, D. D. et al. Competition for water induced by transnational land acquisitions for agriculture. Nat. Commun. 13, 505 (2022).
Google Scholar
Dell’Angelo, J., D’Odorico, P., Rulli, M. C. & Marchand, P. The tragedy of the grabbed commons: coercion and dispossession in the global land rush. World Dev. 92, 1–12 (2017).
Google Scholar
Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).
Google Scholar
Wang, L. & D’Odorico, P. The limits of water pumps. Science 321, 36–37 (2008).
Google Scholar
OECD-FAO Agricultural Outlook 2021–2030 (OECD and FAO, 2021).
Qi, J., Xin, X., John, R., Groisman, P. & Chen, J. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt. Ecol. Process. 6, 22 (2017).
Google Scholar
Godde, C. M. et al. Global rangeland production systems and livelihoods at threat under climate change and variability. Environ. Res. Lett. 15, 044021 (2020).
Google Scholar
Herrero, M. et al. Exploring future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Glob. Environ. Change 24, 165–182 (2014).
Google Scholar
Bannari, A., Morin, D., Bonn, F. & Huete, A. A review of vegetation indices. Remote Sens. Rev. 13, 95–120 (1995).
Google Scholar
Qiu, B. et al. Dense canopies browning overshadowed by global greening dominant in sparse canopies. Sci. Total Environ. 826, 154222 (2022).
Google Scholar
Burrell, A. L., Evans, J. P. & Liu, Y. Detecting dryland degradation using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens. Environ. 197, 43–57 (2017).
Google Scholar
Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).
Google Scholar
Griffith, D. M. et al. Comment on ‘The extent of forest in dryland biomes’. Science 358, eaao1309 (2017).
Google Scholar
Teckentrup, L. et al. Assessing the representation of the Australian carbon cycle in global vegetation models. Biogeosciences 18, 5639–5668 (2021).
Google Scholar
MacBean, N. et al. Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environ. Res. Lett. 16, 094023 (2021). Highlights the often-neglected uncertainties in the prediction of dryland productivity.
Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).
Google Scholar
Whitley, R. et al. A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas. Biogeosciences 13, 3245–3265 (2016).
Google Scholar
Hartley, A. J., MacBean, N., Georgievski, G. & Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 203, 71–89 (2017).
Google Scholar
MacBean, N. et al. Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites. Hydrol. Earth Syst. Sci. 24, 5203–5230 (2020).
Google Scholar
Burrell, A., Evans, J., De & Kauwe, M. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).
Google Scholar
De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? N. Phytol. 231, 2118–2124 (2021).
Google Scholar
Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
Google Scholar
Bernacchi, C. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant Biol. 66, 599–622 (2015).
Google Scholar
Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).
Google Scholar
Anderegg, W. R., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).
Google Scholar
Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).
Google Scholar
Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).
Google Scholar
Abdelmoaty, H. M., Papalexiou, S. M., Rajulapati, C. R. & AghaKouchak, A. Biases beyond the mean in CMIP6 extreme precipitation: a global investigation. Earth’s Future 9, e2021EF002196 (2021).
Google Scholar
Dunkerley, D. L. Light and low-intensity rainfalls: a review of their classification, occurrence, and importance in landsurface, ecological and environmental processes. Earth Sci. Rev. 214, 103529 (2021).
Google Scholar
Zhu, Y. & Yang, S. Interdecadal and interannual evolution characteristics of the global surface precipitation anomaly shown by CMIP5 and CMIP6 models. Int. J. Climatol. 41, E1100–E1118 (2021).
Google Scholar
Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).
Google Scholar
Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).
Google Scholar
Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).
Google Scholar
Trabucco, A. & Zomer, R. Global aridity index and potential evapotranspiration (ET0) climate database v.2. Figshare https://doi.org/10.6084/m9.figshare.7504448.v4 (2019).
Paschalis, A., Fatichi, S., Katul, G. G. & Ivanov, V. Y. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes. J. Geophys. Res. Biogeosci. 120, 1716–1740 (2015).
Google Scholar
Source: Ecology - nature.com