in

Dryland productivity under a changing climate

  • Schimel, D. S. Drylands in the Earth system. Science 327, 418–419 (2010).

    Article 
    CAS 

    Google Scholar 

  • Whitford, W. G. Ecology of Desert Systems (Academic Press, 2002).

  • D’Odorico, P., Porporato, A. & Runyan, C. W. Dryland Ecohydrology Vol. 9 (Springer, 2019). A comprehensive introduction to dryland ecohydrology.

  • Lal, R. Carbon cycling in global drylands. Curr. Clim. Change Rep. 5, 221–232 (2019).

    Article 

    Google Scholar 

  • Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015). Illustrates the role drylands play in determining the variability and long-term trend of the terrestrial CO2 sink.

    Article 

    Google Scholar 

  • Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014). Illustrates the role drylands play in determining the variability of the terrestrial CO2 sink.

  • Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016). A comprehensive review of dryland structure and functioning.

    Article 

    Google Scholar 

  • Wang, L., Kaseke, K. F. & Seely, M. K. Effects of non-rainfall water inputs on ecosystem functions. WIREs Water 4, e1179 (2017). Highlights the often-ignored role of non-rainfall water inputs to dryland ecosystem dynamics.

    Article 

    Google Scholar 

  • Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).

    Article 

    Google Scholar 

  • Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).

    Article 

    Google Scholar 

  • IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  • Gonsamo, A. et al. Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob. Change Biol. 27, 3336–3349 (2021).

    Article 

    Google Scholar 

  • Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).

    Article 

    Google Scholar 

  • Brookshire, E. J., Stoy, P. C., Currey, B. & Finney, B. The greening of the Northern Great Plains and its biogeochemical precursors. Glob. Change Biol. 26, 5404–5413 (2020).

    Article 

    Google Scholar 

  • Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ravi, S. et al. Biological invasions and climate change amplify each other’s effects on dryland degradation. Glob. Change Biol. 28, 285–295 (2022).

    Article 
    CAS 

    Google Scholar 

  • Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere https://doi.org/10.1890/ES15-00203.1 (2015).

  • Yu, K. et al. The competitive advantage of a constitutive CAM species over a C4 grass species under drought and CO2 enrichment. Ecosphere 10, e02721 (2019).

    Article 

    Google Scholar 

  • Fensholt, R. et al. in Remote Sensing Time Series (eds Kuenzer, C. et al.) 183–292 (Springer, 2015).

  • Andela, N., Liu, Y., Van Dijk, A., De Jeu, R. & McVicar, T. Global changes in dryland vegetation dynamics (1988-2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).

    Article 

    Google Scholar 

  • Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).

    Article 
    CAS 

    Google Scholar 

  • Venter, Z., Cramer, M. & Hawkins, H.-J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ukkola, A. M. et al. Annual precipitation explains variability in dryland vegetation greenness globally but not locally. Glob. Change Biol. 27, 4367–4380 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhang, W., Brandt, M., Tong, X., Tian, Q. & Fensholt, R. Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel. Biogeosciences 15, 319–330 (2018).

    Article 

    Google Scholar 

  • Fensholt, R. & Rasmussen, K. Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 115, 438–451 (2011).

    Article 

    Google Scholar 

  • Zhang, W. et al. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nat. Commun. 10, 671 (2019).

    Article 
    CAS 

    Google Scholar 

  • Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hufkens, K. et al. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nat. Clim. Change 6, 710–714 (2016).

    Article 

    Google Scholar 

  • Choler, P., Sea, W., Briggs, P., Raupach, M. & Leuning, R. A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands. Biogeosciences 7, 907–920 (2010).

    Article 

    Google Scholar 

  • Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).

    Article 

    Google Scholar 

  • Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    Article 

    Google Scholar 

  • Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021). Provides a comprehensive analysis on the dryland expansion debates.

    Article 

    Google Scholar 

  • Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. USA 113, 12757–12762 (2016).

    Article 
    CAS 

    Google Scholar 

  • Daramola, M. T. & Xu, M. Recent changes in global dryland temperature and precipitation. Int. J. Climatol. 42, 1267–1282 (2022).

    Article 

    Google Scholar 

  • Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).

    Article 

    Google Scholar 

  • Berg, A. & Sheffield, J. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4, 180–191 (2018).

    Article 

    Google Scholar 

  • Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021). This study found that vegetation growth in the Northern Hemisphere is becoming increasingly water limited.

    Article 
    CAS 

    Google Scholar 

  • Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob. Change Biol. 25, 269–276 (2019).

    Article 

    Google Scholar 

  • D’Odorico, P. & Bhattachan, A. Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security. Phil. Trans. R. Soc. B 367, 3145–3157 (2012).

    Article 

    Google Scholar 

  • Hou, E. et al. Divergent responses of primary production to increasing precipitation variability in global drylands. Glob. Change Biol. 27, 5225–5237 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ritter, F., Berkelhammer, M. & Garcia-Eidell, C. Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Commun. Earth Environ. 1, 34 (2020).

    Article 

    Google Scholar 

  • Ridolfi, L., D’Odorico, P. & Laio, F. Noise-Induced Phenomena in the Environmental Sciences (Cambridge Univ. Press, 2011).

  • Zeng, N. & Neelin, J. D. The role of vegetation–climate interaction and interannual variability in shaping the African savanna. J. Clim. 13, 2665–2670 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0442(2000)0132.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0442%282000%29013%3C2665%3ATROVCI%3E2.0.CO%3B2″ aria-label=”Article reference 43″ data-doi=”10.1175/1520-0442(2000)0132.0.CO;2″>Article 

    Google Scholar 

  • Borgogno, F., D’Odorico, P., Laio, F. & Ridolfi, L. Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophysics 47, RG1005 (2009).

    Article 

    Google Scholar 

  • van de Koppel, J. & Rietkerk, M. Spatial interactions and resilience in arid ecosystems. Am. Nat. 163, 113–121 (2004).

    Article 

    Google Scholar 

  • Lefever, R. & Lejeune, O. On the origin of tiger bush. Bull. Math. Biol. 59, 263–294 (1997).

    Article 

    Google Scholar 

  • Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015). Highlights the role of precipitation varibility in plant community composition in drylands.

    Article 
    CAS 

    Google Scholar 

  • Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).

    Article 

    Google Scholar 

  • Good, S. P. & Caylor, K. K. Climatological determinants of woody cover in Africa. Proc. Natl Acad. Sci. USA 108, 4902–4907 (2011).

    Article 
    CAS 

    Google Scholar 

  • Lu, X., Wang, L., Pan, M., Kaseke, K. F. & Li, B. A multi-scale analysis of Namibian rainfall over the recent decade—comparing TMPA satellite estimates and ground observations. J. Hydrol. Reg. Stud. 8, 59–68 (2016).

    Article 

    Google Scholar 

  • Franz, T., Caylor, K., Nordbotten, J., Rodriguez-Itubre, I. & Celia, M. An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems. Adv. Water Res. 33, 215–230 (2010).

    Article 

    Google Scholar 

  • Knapp, A. K., Chen, A., Griffin-Nolan, R. J., Baur, L. E. & Smith, M. Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc. Natl Acad. Sci. USA 117, 201922030 (2020).

    Article 

    Google Scholar 

  • Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2016).

    Article 

    Google Scholar 

  • Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004). Illustrates the close linkage between water pulses and biogeochemical cycles in drylands.

    Article 

    Google Scholar 

  • Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).

    Article 

    Google Scholar 

  • Collins, S. L. et al. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 397–419 (2014).

    Article 

    Google Scholar 

  • Barnard, R. L., Blazewicz, S. J. & Firestone, M. K. Rewetting of soil: revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 147, 107819 (2020).

    Article 
    CAS 

    Google Scholar 

  • Manzoni, S. et al. Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration. Biogeosciences 17, 4007–4023 (2020).

    Article 
    CAS 

    Google Scholar 

  • Leizeaga, A., Meisner, A., Rousk, J. & Bååth, E. Repeated drying and rewetting cycles accelerate bacterial growth recovery after rewetting. Biol. Fertil. Soils 58, 365–374 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gao, D. et al. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: a meta-analysis. Soil Biol. Biochem. 148, 107896 (2020).

    Article 
    CAS 

    Google Scholar 

  • Homyak, P. M., Allison, S. D., Huxman, T. E., Goulden, M. L. & Treseder, K. K. Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J. Geophys. Res. Biogeosci. 122, 3260–3272 (2017).

    Article 
    CAS 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).

    Article 
    CAS 

    Google Scholar 

  • Nippert, J. B., Knapp, A. K. & Briggs, J. M. Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecol. 184, 65–74 (2006).

    Article 

    Google Scholar 

  • Kaseke, K. F., Wang, L. & Seely, M. K. Nonrainfall water origins and formation mechanisms. Sci. Adv. 3, e1603131 (2017).

    Article 

    Google Scholar 

  • Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. N. Phytol. 219, 1156–1169 (2018).

    Article 

    Google Scholar 

  • Feng, T. et al. Dew formation reduction in global warming experiments and the potential consequences. J. Hydrol. 593, 125819 (2021).

    Article 

    Google Scholar 

  • Gerlein-Safdi, C. et al. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316 (2018).

    Article 

    Google Scholar 

  • Tomaszkiewicz, M., Abou Najm, M., Beysens, D., Alameddine, I. & El-Fadel, M. Dew as a sustainable non-conventional water resource: a critical review. Environ. Rev. 23, 425–442 (2015).

    Article 

    Google Scholar 

  • Fessehaye, M. et al. Fog-water collection for community use. Renew. Sustain. Energy Rev. 29, 52–62 (2014).

    Article 

    Google Scholar 

  • Kidron, G. J. Angle and aspect dependent dew and fog precipitation in the Negev desert. J. Hydrol. 301, 66–74 (2005).

    Article 

    Google Scholar 

  • Chiodi, A. M., Potter, B. E. & Larkin, N. K. Multi-decadal change in western US nighttime vapor pressure deficit. Geophys. Res. Lett. 48, e2021GL092830 (2021).

    Article 

    Google Scholar 

  • Tomaszkiewicz, M. et al. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total Environ. 566, 1339–1348 (2016).

    Article 

    Google Scholar 

  • Walker, B. H., Ludwig, D., Holling, C. S. & Peterman, R. N. Stability of semi-arid savanna grazing systems. J. Ecol. 69, 473–498 (1981).

    Article 

    Google Scholar 

  • Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990).

    Article 
    CAS 

    Google Scholar 

  • D’Odorico, P., Bhattachan, A., Davis, K., Ravi, S. & Runyan, C. Global desertification: drivers and feedbacks. Adv. Water Res. 51, 326–344 (2013).

    Article 

    Google Scholar 

  • Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007). Highlights the loss of ecosystem services as a result of dryland desertification.

    Article 
    CAS 

    Google Scholar 

  • Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol. Lett. 14, 709–722 (2011). Provides a compehenseive analysis of the shrub enrochment effects on dryland functions.

    Article 

    Google Scholar 

  • IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).

  • Yang, H. et al. Tropical expansion driven by poleward advancing midlatitude meridional temperature gradients. J. Geophys. Res. Atmos. 125, e2020JD033158 (2020).

    Article 

    Google Scholar 

  • Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).

    Article 

    Google Scholar 

  • Ayyad, M. A., Fakhry, A. M. & Moustafa, A.-R. A. Plant biodiversity in the Saint Catherine area of the Sinai peninsula. Egypt. Biodivers. Conserv. 9, 265–281 (2000).

    Article 

    Google Scholar 

  • Global Land Outlook 2017 (UNCCD, 2017).

  • Van Ittersum, M. K. et al. Can sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964–14969 (2016).

    Article 

    Google Scholar 

  • Redo, D., Aide, T. M. & Clark, M. L. Vegetation change in Brazil’s dryland ecoregions and the relationship to crop production and environmental factors: Cerrado, Caatinga, and Mato Grosso, 2001–2009. J. Land Use Sci. 8, 123–153 (2013).

    Article 

    Google Scholar 

  • Meyfroidt, P., Lambin, E. F., Erb, K.-H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444 (2013).

    Article 

    Google Scholar 

  • Rulli, M. C., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).

    Article 
    CAS 

    Google Scholar 

  • Müller, M. F. et al. Impact of transnational land acquisitions on local food security and dietary diversity. Proc. Natl Acad. Sci. USA 118, e2020535118 (2021).

    Article 

    Google Scholar 

  • Chiarelli, D. D. et al. Competition for water induced by transnational land acquisitions for agriculture. Nat. Commun. 13, 505 (2022).

    Article 
    CAS 

    Google Scholar 

  • Dell’Angelo, J., D’Odorico, P., Rulli, M. C. & Marchand, P. The tragedy of the grabbed commons: coercion and dispossession in the global land rush. World Dev. 92, 1–12 (2017).

    Article 

    Google Scholar 

  • Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, L. & D’Odorico, P. The limits of water pumps. Science 321, 36–37 (2008).

    Article 
    CAS 

    Google Scholar 

  • OECD-FAO Agricultural Outlook 2021–2030 (OECD and FAO, 2021).

  • Qi, J., Xin, X., John, R., Groisman, P. & Chen, J. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt. Ecol. Process. 6, 22 (2017).

    Article 

    Google Scholar 

  • Godde, C. M. et al. Global rangeland production systems and livelihoods at threat under climate change and variability. Environ. Res. Lett. 15, 044021 (2020).

    Article 

    Google Scholar 

  • Herrero, M. et al. Exploring future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Glob. Environ. Change 24, 165–182 (2014).

    Article 

    Google Scholar 

  • Bannari, A., Morin, D., Bonn, F. & Huete, A. A review of vegetation indices. Remote Sens. Rev. 13, 95–120 (1995).

    Article 

    Google Scholar 

  • Qiu, B. et al. Dense canopies browning overshadowed by global greening dominant in sparse canopies. Sci. Total Environ. 826, 154222 (2022).

    Article 
    CAS 

    Google Scholar 

  • Burrell, A. L., Evans, J. P. & Liu, Y. Detecting dryland degradation using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens. Environ. 197, 43–57 (2017).

    Article 

    Google Scholar 

  • Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).

    Article 
    CAS 

    Google Scholar 

  • Griffith, D. M. et al. Comment on ‘The extent of forest in dryland biomes’. Science 358, eaao1309 (2017).

    Article 

    Google Scholar 

  • Teckentrup, L. et al. Assessing the representation of the Australian carbon cycle in global vegetation models. Biogeosciences 18, 5639–5668 (2021).

    Article 
    CAS 

    Google Scholar 

  • MacBean, N. et al. Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environ. Res. Lett. 16, 094023 (2021). Highlights the often-neglected uncertainties in the prediction of dryland productivity.

  • Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).

    Article 

    Google Scholar 

  • Whitley, R. et al. A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas. Biogeosciences 13, 3245–3265 (2016).

    Article 

    Google Scholar 

  • Hartley, A. J., MacBean, N., Georgievski, G. & Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 203, 71–89 (2017).

    Article 

    Google Scholar 

  • MacBean, N. et al. Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites. Hydrol. Earth Syst. Sci. 24, 5203–5230 (2020).

    Article 
    CAS 

    Google Scholar 

  • Burrell, A., Evans, J., De & Kauwe, M. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).

    Article 
    CAS 

    Google Scholar 

  • De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? N. Phytol. 231, 2118–2124 (2021).

    Article 

    Google Scholar 

  • Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article 
    CAS 

    Google Scholar 

  • Bernacchi, C. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant Biol. 66, 599–622 (2015).

    Article 
    CAS 

    Google Scholar 

  • Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).

    Article 
    CAS 

    Google Scholar 

  • Anderegg, W. R., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).

    Article 
    CAS 

    Google Scholar 

  • Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article 

    Google Scholar 

  • Abdelmoaty, H. M., Papalexiou, S. M., Rajulapati, C. R. & AghaKouchak, A. Biases beyond the mean in CMIP6 extreme precipitation: a global investigation. Earth’s Future 9, e2021EF002196 (2021).

    Article 

    Google Scholar 

  • Dunkerley, D. L. Light and low-intensity rainfalls: a review of their classification, occurrence, and importance in landsurface, ecological and environmental processes. Earth Sci. Rev. 214, 103529 (2021).

    Article 

    Google Scholar 

  • Zhu, Y. & Yang, S. Interdecadal and interannual evolution characteristics of the global surface precipitation anomaly shown by CMIP5 and CMIP6 models. Int. J. Climatol. 41, E1100–E1118 (2021).

    Article 

    Google Scholar 

  • Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).

    Article 
    CAS 

    Google Scholar 

  • Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).

    Article 

    Google Scholar 

  • Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).

    Article 

    Google Scholar 

  • Trabucco, A. & Zomer, R. Global aridity index and potential evapotranspiration (ET0) climate database v.2. Figshare https://doi.org/10.6084/m9.figshare.7504448.v4 (2019).

  • Paschalis, A., Fatichi, S., Katul, G. G. & Ivanov, V. Y. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes. J. Geophys. Res. Biogeosci. 120, 1716–1740 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A short exposure to a semi-natural habitat alleviates the honey bee hive microbial imbalance caused by agricultural stress

    Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium