in

Dynamics of actively dividing prokaryotes in the western Mediterranean Sea

  • 1.

    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    CAS 
    ADS 

    Google Scholar 

  • 2.

    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Giovannoni, S. J. & Stingl, U. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 4.

    Kujawinski, E. B. The impact of microbial metabolism on marine dissolved organic matter. Ann. Rev. Mar. Sci. 3, 567–599 (2011).

    PubMed 

    Google Scholar 

  • 5.

    Moran, M. A. The global ocean microbiome. Science 350, aac8455 (2015).

    PubMed 

    Google Scholar 

  • 6.

    Pedrós-Alió, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 15.1-15.18 (2012).

    Google Scholar 

  • 7.

    Salazar, G. et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 10, 596–608 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl. Acad. Sci. 103, 12115–12120 (2006).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 9.

    Kirchman, D. L. Growth rates of microbes in the oceans. Ann. Rev. Mar. Sci. 8, 285–309 (2016).

    PubMed 

    Google Scholar 

  • 10.

    Campbell, B. J., Yu, L., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl. Acad. Sci. 108, 12776–12781 (2011).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 11.

    Salter, I. et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 9, 347–360 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Våge, S., Storesund, J. E. & Thingstad, T. F. Adding a cost of resistance description extends the ability of virus-host model to explain observed patterns in structure and function of pelagic microbial communities. Environ. Microbiol. 15, 1842–1852 (2012).

    Google Scholar 

  • 14.

    Våge, S., Storesund, J. E. & Thingstad, T. F. SAR11 viruses and defensive host strains. Nature 499, 9–11 (2013).

    Google Scholar 

  • 15.

    Giovannoni, S., Temperton, B. & Zhao, Y. Giovannoni et al. reply. Nature 499, 9–11 (2013).

    Google Scholar 

  • 16.

    Zhao, Y. et al. Abundant SAR11 viruses in the ocean. Nature 494, 357–360 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 17.

    Herndl, G. J. et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303–2309 (2005).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 18.

    Teira, E., Lebaron, P., Van Aken, H. & Herndl, G. J. Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic. Limnol. Oceanogr. 51, 2131–2144 (2006).

    CAS 
    ADS 

    Google Scholar 

  • 19.

    Newton, R. J. & Shade, A. Lifestyles of rarity: Understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat. Microb. Ecol. 78, 51–63 (2016).

    Google Scholar 

  • 20.

    Hamasaki, K., Taniguchi, A., Tada, Y., Long, R. A. & Azam, F. Actively growing bacteria in the Inland Sea of Japan, identified by combined bromodeoxyuridine immunocapture and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 73, 2787–2798 (2007).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 21.

    Tada, Y., Makabe, R., Kasamatsu-Takazawa, N., Taniguchi, A. & Hamasaki, K. Growth and distribution patterns of Roseobacter/Rhodobacter, SAR11, and Bacteroidetes lineages in the Southern Ocean. Polar Biol. 36, 691–704 (2013).

    Google Scholar 

  • 22.

    Suttle, C. A. Marine viruses—Major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3, 537–546 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Mena, C. et al. Seasonal niche partitioning of surface temperate open ocean prokaryotic communities. Front. Microbiol. 11, 1749 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Mena, C. et al. Dynamic prokaryotic communities in the dark western Mediterranean Sea. Sci. Rep. 11, 17859 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 26.

    Urbach, E., Vergin, K. L. & Giovannoni, S. J. Immunochemical detection and isolation of DNA from metabolically active bacteria. Appl. Environ. Microbiol. 65, 1207–1213 (1999).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 27.

    Hatzenpichler, R. et al. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ. Microbiol. 16, 2568–2590 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Emerson, J. et al. Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Micobiome 5, 86 (2017).

    Google Scholar 

  • 29.

    Smriga, S., Samo, T., Malfatti, F., Villareal, J. & Azam, F. Individual cell DNA synthesis within natural marine bacterial assemblages as detected by ‘click’ chemistry. Aquat. Microb. Ecol. 72, 269–280 (2014).

    Google Scholar 

  • 30.

    Reichart, N. et al. Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment. ISME J. 14, 2851–2861 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Bakenhus, I. et al. Composition of total and cell-proliferating bacterioplankton community in early summer in the North Sea—Roseobacters are the most active component. Front. Microbiol. 8, 1–14 (2017).

    Google Scholar 

  • 32.

    Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 33.

    Giovannoni, S. J. SAR11 Bacteria: The most abundant plankton in the oceans. Ann. Rev. Mar. Sci. 9, 231–255 (2017).

    PubMed 

    Google Scholar 

  • 34.

    Clifford, E. L. et al. Taurine is a major carbon and energy source for marine prokaryotes in the North Atlantic Ocean off the Iberian Peninsula. Microb. Ecol. 78, 299–312 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Tripp, H. J. et al. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741–744 (2008).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 36.

    Carlson, C. A. et al. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 3, 283–295 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Winter, C., Bouvier, T., Weinbauer, M. G. & Thingstad, T. F. Trade-offs between competition and defense specialists among unicellular planktonic organisms: The ‘Killing the Winner’ hypothesis revisited. Microbiol. Mol. Biol. Rev. 74, 42–57 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Vergin, K. L. et al. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences. ISME J. 7, 1322–1332 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Hugoni, M. et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc. Natl. Acad. Sci. 110, 1–6 (2013).

    Google Scholar 

  • 40.

    Qin, W. et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc. Natl. Acad. Sci. 111, 12504–12509 (2014).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 41.

    Pollard, P. C. & Moriarty, D. J. W. Validity of the tritiated thymidine method for estimating bacterial growth rates: Measurement of isotope dilution during DNA synthesis. Appl. Environ. Microbiol. 48, 1076–1083 (1984).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 42.

    Wellsbury, P., Herbert, R. A. & John Parkes, R. Incorporation of [methyl-3H]thymidine by obligate and facultative anaerobic bacteria when grown under defined culture conditions. FEMS Microbiol. Ecol. 12, 87–95 (1993).

    CAS 

    Google Scholar 

  • 43.

    Clausen, A., Matakos, A., Sandrini, M. & Piskur, J. Thymidine kinases in Archaea. Nucleosides Nucleotides Nucleic Acids 25, 1159–1163 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Hamasaki, K., Long, R. A. & Azam, F. Individual cell growth rates of marine bacteria, measured by bromodeoxyuridine incorporation. Aquat. Microb. Ecol. 35, 217–227 (2004).

    Google Scholar 

  • 45.

    Qin, W. et al. Influence of oxygen availability on the activities of ammonia-oxidizing Archaea. Environ. Microbiol. Rep. 9, 250–256 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Reji, L., Tolar, B. B., Smith, J. M., Chavez, F. P. & Francis, C. A. Differential co-occurrence relationships shaping ecotype diversification within Thaumarchaeota populations in the coastal ocean water column. ISME J. 13, 1144–1158 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Sebastián, M. et al. Deep ocean prokaryotic communities are remarkably malleable when facing long-term starvation. Environ. Microbiol. 20, 713–723 (2018).

    PubMed 

    Google Scholar 

  • 48.

    Vergin, K. L., Done, B., Carlson, C. A. & Giovannoni, S. J. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquat. Microb. Ecol. 71, 1–13 (2013).

    Google Scholar 

  • 49.

    Tada, Y., Taniguchi, A., Sato-Takabe, Y. & Hamasaki, K. Growth and succession patterns of major phylogenetic groups of marine bacteria during a mesocosm diatom bloom. J. Oceanogr. 68, 509–519 (2012).

    Google Scholar 

  • 50.

    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl. Acad. Sci. 115, E6799–E6807 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Ruiz-González, C. et al. Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Mol. Ecol. 29, 1820–1838 (2020).

    PubMed 

    Google Scholar 

  • 52.

    Chen, X., Ma, R., Yang, Y., Jiao, N. & Zhang, R. Viral regulation on bacterial community impacted by lysis-lysogeny switch: A microcosm experiment in eutrophic coastal waters. Front. Microbiol. 10, 1763 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    McCarren, J. et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc. Natl. Acad. Sci. 107, 16420–16427 (2010).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 54.

    Reintjes, G., Arnosti, C., Fuchs, B. & Amann, R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: A biogeographical study of bacterial substrate utilisation. ISME J. 13, 1119–1132 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Middelboe, M. Bacterial growth rate and marine virus-host dynamics. Microb. Ecol. 40, 114–124 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Buchan, A., Lecleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Mou, X. et al. Bromodeoxyuridine labelling and fluorescence-activated cell sorting of polyamine-transforming bacterioplankton in coastal seawater. Environ. Microbiol. 17, 876–888 (2014).

    PubMed 

    Google Scholar 

  • 58.

    Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Yilmaz, P., Yarza, P., Rapp, J. Z. & Glöckner, F. O. Expanding the world of marine bacterial and archaeal clades. Front. Microbiol. 6, 1524 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Coe, A. et al. Survival of Prochlorococcus in extended darkness. Limnol. Oceanogr. 61, 1375–1388 (2016).

    ADS 

    Google Scholar 

  • 61.

    Cottrell, M. T. & Kirchman, D. L. Photoheterotrophic microbes in the arctic ocean in summer and winter. Appl. Environ. Microbiol. 75, 4958–4966 (2009).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 62.

    Zeder, M., Peter, S., Shabarova, T. & Pernthaler, J. A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ. Microbiol. 11, 2676–2686 (2009).

    PubMed 

    Google Scholar 

  • 63.

    Cottrell, M. T. & Kirchman, D. L. Natural assemblages of marine proteobacteria and members of the Cytophaga-flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66, 1692–1697 (2000).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 64.

    Banning, E. C., Casciotti, K. L. & Kujawinski, E. B. Novel strains isolated from a coastal aquifer suggest a predatory role for flavobacteria. FEMS Microbiol. Ecol. 73, 254–270 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Uchimiya, M. et al. Coupled response of bacterial production to a wind-induced fall phytoplankton bloom and sediment resuspension in the chukchi sea shelf, Western Arctic Ocean. Front. Mar. Sci. 3, 1–12 (2016).

    Google Scholar 

  • 66.

    Ivancic, I. et al. Seasonal variations in extracellular enzymatic activity in marine snow-associated microbial communities and their impact on the surrounding water. FEMS Microbiol. Ecol. 94, fiy198 (2018).

    CAS 

    Google Scholar 

  • 67.

    Cram, J. A. et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 9, 563–580 (2015).

    PubMed 

    Google Scholar 

  • 68.

    Manca, B. et al. Physical and biochemical averaged vertical profiles in the Mediterranean regions: An important tool to trace the climatology of water masses and to validate incoming data from operational oceanography. J. Mar. Syst. 48, 83–116 (2004).

    Google Scholar 

  • 69.

    Puig, P. & Palanques, A. Temporal variability and composition of settling particle fluxes on the Barcelona continental margin (Northwestern Mediterranean). J. Mar. Res. 56, 639–654 (1998).

    Google Scholar 

  • 70.

    Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).

    CAS 
    ADS 

    Google Scholar 

  • 71.

    Alonso-González, I. J., Arístegui, J., Lee, C. & Calafat, A. Regional and temporal variability of sinking organic matter in the subtropical northeast Atlantic Ocean: A biomarker diagnosis. Biogeosciences 7, 2101–2115 (2010).

    ADS 

    Google Scholar 

  • 72.

    Hunt, D. E. et al. Relationship between abundance and specific activity of bacterioplankton in open ocean surface waters. Appl. Environ. Microbiol. 79, 177–184 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 73.

    Campbell, B. J. & Kirchman, D. L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 7, 210–220 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Alderkamp, A. C., Sintes, E. & Herndl, G. J. Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during spring and summer. Aquat. Microb. Ecol. 45, 237–246 (2006).

    Google Scholar 

  • 75.

    De Corte, D., Sintes, E., Yokokawa, T. & Herndl, G. J. Comparison between MICRO-CARD-FISH and 16S rRNA gene clone libraries to assess the active versus total bacterial community in the coastal Arctic. Environ. Microbiol. Rep. 5, 272–281 (2013).

    PubMed 

    Google Scholar 

  • 76.

    Bergauer, K. et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc. Natl. Acad. Sci. 115, E400–E408 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Georges, A. A., El-Swais, H., Craig, S. E., Li, W. K. W. & Walsh, D. A. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 8, 1301–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Couradeau, E. et al. Probing the active fraction of soil microbiomes using BONCAT-FACS. Nat. Commun. 10, 2770 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 79.

    Wu, X. et al. Culturing of ‘unculturable’ subsurface microbes: Natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front. Microbiol. 11, 610001 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Alonso-Sáez, L., Díaz-Pérez, L. & Morán, X. A. G. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ. Microbiol. 17, 3766–3780 (2015).

    PubMed 

    Google Scholar 

  • 81.

    Liu, J., Meng, Z., Liu, X. & Zhang, X.-H. Microbial assembly, interaction, functioning, activity and diversification: A review derived from community compositional data. Mar. Life Sci. Technol. 1, 112–128 (2019).

    ADS 

    Google Scholar 

  • 82.

    Long, R. A. & Azam, F. Antagonistic interactions among marine pelagic bacteria. Appl. Environ. Microbiol. 67, 4975–4983 (2001).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 83.

    López-Jurado, J. L. et al. The RADMED monitoring programme as a tool for MSFD implementation: Towards an ecosystem-based approach. Ocean Sci. 11, 897–908 (2015).

    ADS 

    Google Scholar 

  • 84.

    Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis (Fisheries Research Board of Canada, 1968).

    Google Scholar 

  • 85.

    Grasshoff, K., Ehrhardt, M. & Kremling, K. Methods of seawater analysis (Verlag Chemie GmbH, 1983). https://doi.org/10.1002/iroh.19850700232.

    Book 

    Google Scholar 

  • 86.

    Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).

    CAS 

    Google Scholar 

  • 87.

    Brussaard, C. P. D. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol. 70, 1506–1513 (2004).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 88.

    Gasol, J. M. & del Giorgio, P. A. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar. 64, 197–224 (2000).

    Google Scholar 

  • 89.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Callahan, B. J. et al. Dada2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Katoh, K. & Standley, D. M. MAFFT Multiple sequence aligment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 93.

    Eren, A. M. et al. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 4, 1111–1119 (2013).

    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: What a single car can say about traffic

    The fabrication and assessment of mosquito repellent cream for outdoor protection