Gruninger, R. J., Ribeiro, G. O., Cameron, A. & McAllister, T. A. Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal 13, 1843–1854 (2019).
Google Scholar
Morgavi, D. P., Kelly, W. J., Janssen, P. H. & Attwood, G. T. Rumen microbial (meta)genomics and its application to ruminant production. Animal 7, 184–201 (2013).
Google Scholar
Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567–590 (1990).
Google Scholar
Flint, H. J. The rumen microbial ecosystem—Some recent developments. Trends Microbiol. 5, 483–488 (1997).
Google Scholar
Hobson, P. N. & Stewart, C. S. The Rumen Microbial Ecosystem. (Springer, 2012).
Moraïs, S. & Mizrahi, I. The road not taken: The rumen microbiome, functional groups, and community states. Trends Microbiol. 27, 538–549 (2019).
Cheng, K. J., Forsberg, C. W., Minato, H. & Costerton, J. W. in Physiological Aspects of Digestion and Metabolism in Ruminants (eds T. Tsuda, Y. Sasaki, & R. Kawashima) 595–624 (Academic Press, 1991).
McSweeney, C. S., Palmer, B., McNeill, D. M. & Krause, D. O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Technol. 91, 83–93 (2001).
Google Scholar
Skene, I. K. & Brooker, J. D. Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium. Anaerobe 1, 321–327 (1995).
Google Scholar
Khanbabaee, K. & van Ree, T. Tannins: Classification and definition. Nat. Prod. Rep. 18, 641–649 (2001).
Google Scholar
Makkar, H. P. S. & Becker, K. Isolation of tannins from leaves of some trees and shrubs and their properties. J. Agric. Food Chem. 42, 731–734 (1994).
Google Scholar
Bhat, T. K., Kannan, A., Singh, B. & Sharma, O. P. Value addition of feed and fodder by alleviating the antinutritional effects of tannins. Agr. Res. 2, 189–206 (2013).
Google Scholar
Shimada, T. Salivary proteins as a defense against dietary tannins. J. Chem. Ecol. 32, 1149–1163 (2006).
Google Scholar
Zhu, J., Filippich, L. J. & Alsalami, M. T. Tannic acid intoxication in sheep and mice. Res. Vet. Sci. 53, 280–292 (1992).
Google Scholar
Kohl, K. D., Stengel, A. & Dearing, M. D. Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets. Environ. Microbiol. 18, 1720–1729 (2016).
Google Scholar
Kumar, K., Chaudhary, L. C., Agarwal, N. & Kamra, D. N. Isolation and characterization of tannin-degrading bacteria from the rumen of goats fed oak (Quercus semicarpifolia) leaves. Agr. Res. 3, 377–385 (2014).
Odenyo, A. A. et al. Characterization of tannin-tolerant bacterial isolates from East African ruminants. Anaerobe 7, 5–15 (2001).
Google Scholar
Grilli, D. J. et al. Analysis of the rumen bacterial diversity of goats during shift from forage to concentrate diet. Anaerobe 42, 17–26 (2016).
Tong, J. et al. Illumina sequencing analysis of the ruminal microbiota in high-yield and low-yield lactating dairy cows. PLoS ONE 13, e0198225 (2018).
Pope, P. B. et al. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7, e38571 (2012).
Google Scholar
Østbye, K., Wilson, R. & Rudi, K. Rumen microbiota for wild boreal cervids living in the same habitat. FEMS Microbiol. Lett. 363, fnw233 (2016).
Gruninger, R. J., Sensen, C. W., McAllister, T. A. & Forster, R. J. Diversity of rumen bacteria in Canadian cervids. PLoS ONE 9, e89682 (2014).
Google Scholar
Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567 (2015).
Google Scholar
Reese, A. T. & Kearney, S. M. Incorporating functional trade-offs into studies of the gut microbiota. Curr. Opin. Microbiol. 50, 20–27 (2019).
Google Scholar
Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).
Google Scholar
Okano, T. & Matsuda, H. Biocultural diversity of Yakushima Island: Mountains, beaches, and sea. J. Mar. Isl. Cult. 2, 69–77 (2013).
Agetsuma, N., Agetsuma-Yanagihara, Y. & Takafumi, H. Food habits of Japanese deer in an evergreen forest: Litter-feeding deer. Mamm. Biol. 76, 201–207 (2011).
Higashi, Y., Hirota, S. K., Suyama, Y. & Yahara, T. Geographical and seasonal variation of plant taxa detected in faces of Cervus nippon yakushimae based on plant DNA analysis in Yakushima Island. Ecol. Res. 37, 582–597 (2022).
Google Scholar
Kuroiwa, A. Nutritional ecology of the Yakushika (Cervus nippon yakushimae) population under high density Ph.D. thesis, Kyushu University, (2017).
Koda, R., Agetsuma, N., Agetsuma-Yanagihara, Y., Tsujino, R. & Fujita, N. A proposal of the method of deer density estimate without fecal decomposition rate: A case study of fecal accumulation rate technique in Japan. Ecol. Res. 26, 227–231 (2011).
Yahara, T. in Deer eats world heritages: Ecology of deer and forets (eds T. Yumoto & H. Matsuda) 168–187 (Bunichi-Sogo-Shuppan, 2006).
Onoda, Y. & Yahara, T. in Challenges for Conservation Ecology in Space and Time. (eds T. Miyashita & J. Nishihiro) 126–149 (University of Tokyo Press, 2015).
Kagoshima Prefecture Nature Conservation Division. The current status of Yakusika in FY 2020, available at https://www.rinya.maff.go.jp/kyusyu/fukyu/shika/attach/pdf/yakushikaWG_R3_2-23.pdf (2020).
Kuroiwa, A., Kuroe, M. & Yahara, T. Effects of density, season, and food intake on sika deer nutrition on Yakushima Island, Japan. Ecol. Res. 32, 369–378 (2017).
Hiura, T., Hashidoko, Y., Kobayashi, Y. & Tahara, S. Effective degradation of tannic acid by immobilized rumen microbes of a sika deer (Cervus nippon yesoensis) in winter. Anim. Feed Sci. Technol. 155, 1–8 (2010).
Google Scholar
Kawarai, S. et al. Seasonal and geographical differences in the ruminal microbial and chloroplast composition of sika deer (Cervus nippon) in Japan. Sci. Rep. 12, 6356 (2022).
Google Scholar
Li, Z. et al. Response of the rumen microbiota of sika deer Cervus nippon fed different concentrations of tannin rich plants. PLoS ONE 10, e0123481 (2015).
McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).
Google Scholar
Kim, M., Morrison, M. & Yu, Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol. Ecol. 76, 49–63 (2011).
Google Scholar
Weimer, P. J. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Front. Microbiol. 6, 296 (2015).
Scott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J. & Duncan, S. H. The influence of diet on the gut microbiota. Pharmacol. Res. 69, 52–60 (2013).
Google Scholar
Tapio, I. et al. Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows. PLoS ONE 12, e0180260 (2017).
Ohara, M. in Agriculture in Hokkaido v2 (ed K. Iwama, Ohara, M., Araki, H., Yamada, T., Nakatsuji, H., Kataoka, T., Yamamoto, Y.) 1–18(Faculty of Agriculture, Hokkaido Univ., 2009).
Igota, H., Sakuragi, M. & Uno, H. in Sika Deer: Biology and Management of Native and Introduced Populations (eds. Dale R. McCullough, Seiki Takatsuki, & Koichi Kaji) 251–272 (Springer Japan, 2009).
Fernando, S. C. et al. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 76, 7482–7490 (2010).
Google Scholar
Hu, X. et al. High-throughput analysis reveals seasonal variation of the gut microbiota composition within forest musk deer (Moschus berezovskii). Front. Microbiol. 9, (2018).
Artzi, L., Morag, E., Shamshoum, M. & Bayer, E. A. Cellulosomal expansion: Functionality and incorporation into the complex. Biotechnol. Biofuels 9, 61 (2016).
Biddle, A., Stewart, L., Blanchard, J. & Leschine, S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 5, (2013).
Eisenhauer, N., Scheu, S. & Jousset, A. Bacterial diversity stabilizes community productivity. PLoS ONE 7, e34517 (2012).
Google Scholar
Miller, A. W., Oakeson, K. F., Dale, C. & Dearing, M. D. Effect of dietary oxalate on the gut microbiota of the mammalian herbivore Neotoma albigula. Appl. Environ. Microbiol. 82, 2669–2675 (2016).
Google Scholar
Adams, J. M., Rehill, B., Zhang, Y. & Gower, J. A test of the latitudinal defense hypothesis: Herbivory, tannins and total phenolics in four North American tree species. Ecol. Res. 24, 697–704 (2009).
Google Scholar
Nabeshima, E., Murakami, M. & Hiura, T. Effects of herbivory and light conditions on induced defense in Quercus crispula. J. Plant Res. 114, 403–409 (2001).
Yang, C.-M., Yang, M.-M., Hsu, J.-M. & Jane, W.-N. Herbivorous insect causes deficiency of pigment–protein complexes in an oval-pointed cecidomyiid gall of Machilus thunbergii leaf. Bot. Bull. Acad. Sin. 44, 315–321 (2003).
Agetsuma, N., Agetsuma-Yanagihara, Y., Takafumi, H. & Nakaji, T. Plant constituents affecting food selection by sika deer. J. Wildl. Manag. 83, 669–678 (2019).
Couch, C. E. et al. Diet and gut microbiome enterotype are associated at the population level in African buffalo. Nat. Commun. 12, 2267 (2021).
Google Scholar
Goel, G., Puniya, A. K. & Singh, K. Tannic acid resistance in ruminal streptococcal isolates. J. Basic Microbiol. 45, 243–245 (2005).
Google Scholar
Jiménez, N. et al. Genetic and biochemical approaches towards unravelling the degradation of gallotannins by Streptococcus gallolyticus. Microb. Cell Fact. 13, 154 (2014).
Nelson, K. E., Thonney, M. L., Woolston, T. K., Zinder, S. H. & Pell, A. N. Phenotypic and phylogenetic characterization of ruminal tannin-tolerant bacteria. Appl. Environ. Microbiol. 64, 3824–3830 (1998).
Google Scholar
Selwal, M. K. et al. Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa IIIB 8914 under submerged fermentation. World J. Microbiol. Biotechnol. 26, 599–605 (2010).
Google Scholar
Kohl, K. D., Weiss, R. B., Cox, J., Dale, C. & Denise Dearing, M. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol. Lett. 17, 1238–1246 (2014).
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Method 7, 335–336 (2010).
Google Scholar
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
Google Scholar
Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2009).
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
Google Scholar
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).
Osawa, R. Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas. Appl. Environ. Microbiol. 56, 829–831 (1990).
Google Scholar
Hamamura, N., Olson, S. H., Ward, D. M. & Inskeep, W. P. Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Appl. Environ. Microbiol. 71, 5943–5950 (2005).
Google Scholar
Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2012).
Google Scholar
Chen, I.-M. A. et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res. 49, D751–D763 (2020)
Suzuki, M. T., Taylor, L. T. & Delong, E. F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5 ’-nuclease assays. Appl. Environ. Microbiol. 66, 4605–4614 (2000).
Google Scholar
Source: Ecology - nature.com