in

Ecogenomics reveals viral communities across the Challenger Deep oceanic trench

  • Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Angly, F. E. et al. The marine viromes of four oceanic regions. PLOS Biol. 4, 2121–2131 (2006).

    CAS 
    Article 

    Google Scholar 

  • Labonté, J. M. & Suttle, C. A. Previously unknown and highly divergent ssDNA viruses populate the oceans. ISME J. 7, 2169–2177 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Allen, L. Z. et al. The Baltic sea virome: diversity and transcriptional activity of DNA and RNA viruses. mSystems 2, e00125–00116 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hurwitz, B. L., Hallam, S. J. & Sullivan, M. B. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 14, R123 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kim, J.-G. et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc. Natl Acad. Sci. USA 116, 15645–15650 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Danovaro, R. et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Danovaro, R. et al. Viriobenthos in freshwater and marine sediments: a review. Freshw. Biol. 53, 1186–1213 (2008).

    Article 

    Google Scholar 

  • Engelhardt, T., Kallmeyer, J., Cypionka, H. & Engelen, B. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 8, 1503–1509 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Middelboe, M., Glud, R. N. & Filippini, M. Viral abundance and activity in the deep sub-seafloor biosphere. Aquat. Micro. Ecol. 63, 1–8 (2011).

    Article 

    Google Scholar 

  • Li, Z. et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15, 2366–2378 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zheng, X. et al. Extraordinary diversity of viruses in deep-sea sediments as revealed by metagenomics without prior virion separation. Environ. Microbiol 23, 728–743 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Helton, R. R., Liu, L. & Wommack, K. E. Assessment of factors influencing direct enumeration of viruses within estuarine sediments. Appl Environ. Microbiol 72, 4767–4774 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pan, D., Morono, Y., Inagaki, F. & Takai, K. An improved method for extracting viruses from sediment: detection of far more viruses in the subseafloor than previously reported. Front Microbiol 10, 878 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Armanious, A. et al. Viruses at solid–water interfaces: a systematic assessment of interactions driving adsorption. Environ. Sci. Technol. 50, 732–743 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Trubl, G. et al. Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient. PeerJ 4, e1999 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Maat, D. S., Prins, M. A. & Brussaard, C. P. D. Sediments from arctic tide-water glaciers remove coastal marine viruses and delay host infection. Viruses 11, 123 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Loveland, J. P., Ryan, J. N., Amy, G. L. & Harvey, R. W. The reversibility of virus attachment to mineral surfaces. Colloids Surf. A Physicochem. Eng. Asp. 107, 205–221 (1996).

    CAS 
    Article 

    Google Scholar 

  • Fuhs, G. W., Chen, M., Sturman, L. S. & Moore, R. S. Virus adsorption to mineral surfaces is reduced by microbial overgrowth and organic coatings. Microb. Ecol. 11, 25–39 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cai, L. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 13, 1857–1864 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Manea, E. et al. Viral infections boost prokaryotic biomass production and organic C cycling in hadal trench sediments. Front Microbiol 10, 1952 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv. 2, e1600492 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yoshida, M., Takaki, Y., Eitoku, M., Nunoura, T. & Takai, K. Metagenomic analysis of viral communities in (hado)pelagic sediments. PLoS One 8, e57271 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bäckström, D. et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10, e02497–02418 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jian, H. et al. Diversity and distribution of viruses inhabiting the deepest ocean on Earth. ISME J. 15, 3094–3110 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhou, H. et al. Revealing the viral community in the hadal sediment of the New Britain Trench. Genes 12, 990 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dell’Anno, A., Corinaldesi, C. & Danovaro, R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc. Natl Acad. Sci. USA 112, E2014–E2019 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).

    CAS 
    Article 

    Google Scholar 

  • Luo, M. et al. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption. Geophys. Res. Lett. 45, 2752–2760 (2018).

    CAS 
    Article 

    Google Scholar 

  • Hiraoka, S. et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 14, 740–756 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cui, G., Li, J., Gao, Z. & Wang, Y. Spatial variations of microbial communities in abyssal and hadal sediments across the Challenger Deep. PeerJ 7, e6961 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhou, Y.-L., Mara, P., Cui, G.-J., Edgcomb, V. P. & Wang, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Nat. Commun. 13, 1515 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marquet M., et al. What the Phage: a scalable workflow for the identification and analysis of phage sequences. bioRxiv https://www.biorxiv.org/content/10.1101/2020.07.24.219899v1 (2020).

  • Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gregory, A. C. et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics 17, 930 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bobay, L.-M. & Ochman, H. Biological species are universal across life’s domains. Genome Biol. Evol. 9, 491–501 (2017).

    PubMed Central 
    Article 

    Google Scholar 

  • Nayfach S., et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2020).

  • Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Article 

    Google Scholar 

  • Dalcin Martins, P. et al. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome 6, 138 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhao, J. et al. Novel viral communities potentially assisting in carbon, nitrogen, and sulfur metabolism in the upper slope sediments of Mariana Trench. mSystems 7, e01358–01321 (2022).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Walker, P. J. et al. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. 166, 2633–2648 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740 e728 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nishimura, Y. et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere 2, e00359–00316 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vik, D. R. et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ 5, e3428 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience 49, 781–788 (1999).

    Article 

    Google Scholar 

  • Peoples, L. M. et al. Microbial community diversity within sediments from two geographically separated hadal trenches. Front. Microbiol. 10, 347 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mara, P. et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 14, 3079–3092 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Breitbart, M., Thompson, L. R., Suttle, C. A. & Sullivan, M. B. Exploring the vast diversity of marine viruses. Oceanography 20, 135–139 (2007).

    Article 

    Google Scholar 

  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rubino, F. M. Toxicity of glutathione-binding metals: a review of targets and mechanisms. Toxics 3, 20–62 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jozefczak, M., Remans, T., Vangronsveld, J. & Cuypers, A. Glutathione is a key player in metal-induced oxidative stress defenses. Int J. Mol. Sci. 13, 3145–3175 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, M. et al. Methylmercury bioaccumulation in deepest ocean fauna: implications for ocean mercury biotransport through food webs. Environ. Sci. Technol. Lett. 7, 469–476 (2020).

    CAS 
    Article 

    Google Scholar 

  • Welty, C. J., Sousa, M. L., Dunnivant, F. M. & Yancey, P. H. High-density element concentrations in fish from subtidal to hadal zones of the Pacific Ocean. Heliyon 4, e00840 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, P. et al. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol. 22, 207 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Williams, A. H. & Raetz, C. R. H. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc. Natl Acad. Sci. USA 104, 13543–13550 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ahmad, S., Raza, S., Abro, A., Liedl, K. R. & Azam, S. S. Toward novel inhibitors against KdsB: a highly specific and selective broad-spectrum bacterial enzyme. J. Biomol. Struct. Dyn. 37, 1326–1345 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gronow, S., Brabetz, W. & Brade, H. Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli. Eur. J. Biochem. 267, 6602–6611 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abeyrathne, P. D., Daniels, C., Poon, K. K. H., Matewish, M. J. & Lam, J. S. Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa Lipopolysaccharide. J. Bacteriol. 187, 3002–3012 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kneidinger, B. et al. Biosynthesis pathway of ADP-l-glycero-β-manno-heptose in Escherichia coli. J. Bacteriol. 184, 363–369 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sullivan, M. B., Coleman, M. L., Weigele, P., Rohwer, F. & Chisholm, S. W. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. Plos Biol. 3, 790–806 (2005).

    CAS 
    Article 

    Google Scholar 

  • Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Auer, G. K. & Weibel, D. B. Bacterial cell mechanics. Biochemistry 56, 3710–3724 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Castelán-Sánchez, H. G. et al. Extremophile deep-sea viral communities from hydrothermal vents: structural and functional analysis. Mar. Genomics 46, 16–28 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Chothi, M. P. et al. Identification of an L-rhamnose synthetic pathway in two nucleocytoplasmic large DNA viruses. J. Virol. 84, 8829–8838 (2010).

    CAS 
    Article 

    Google Scholar 

  • Bachy C., et al. Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. ISME J. 15, 3129–3147 (2021).

  • Zhang, W. et al. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes. Sci. Rep. 5, 15131 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Clerissi, C. et al. Prasinovirus distribution in the Northwest Mediterranean Sea is affected by the environment and particularly by phosphate availability. Virology 466–467, 146–157 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Mistou, M. Y., Sutcliffe, I. C. & van Sorge, N. M. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol. Rev. 40, 464–479 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wendlinger, G., Loessner, M. J. & Scherer, S. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142, 985–992 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Michael, V. et al. Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ‘swim-or-stick’ lifestyle in roseobacters. ISME J. 10, 2498–2513 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, X., Weinbauer, M. G., Jiao, N. & Zhang, R. Revisiting marine lytic and lysogenic virus-host interactions: Kill-the-Winner and Piggyback-the-Winner. Sci. Bull. 66, 871–874 (2021).

    CAS 
    Article 

    Google Scholar 

  • Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gao, Z.-M. et al. In situ meta-omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench. Environ. Microbiol. 21, 4092–4108 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pratama A. A., et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene. PeerJ 9, e11447 (2021).

  • Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet. 9, 304 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 69 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fang Z., et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. GigaScience 8, giz066 (2019).

  • Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jurtz, V. I., Villarroel, J., Lund, O., Voldby Larsen, M. & Nielsen, M. MetaPhinder—identifying bacteriophage sequences in metagenomic data sets. PLoS One 11, e0163111 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ren, J. et al. Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8, 64–77 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Abdelkareem A. O., Khalil M. I., Elaraby M., Abbas H. & Elbehery A. H. A. VirNet: deep attention model for viral reads identification. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES) (2018).

  • Starikova, E. V. et al. Phigaro: high-throughput prophage sequence annotation. Bioinformatics 36, 3882–3884 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Auslander, N., Gussow, A. B., Benler, S., Wolf, Y. I. & Koonin, E. V. Seeker: alignment-free identification of bacteriophage genomes by deep learning. Nucleic Acids Res. 48, e121–e121 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2018).

    PubMed Central 
    Article 

    Google Scholar 

  • Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12, 1673–1682 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gao, S.-M. et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome 8, 89 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dudek, N. K., Sun, C., Burstein, D., Kantor, R. & Relman, D. Novel microbial diversity and functional potential in the marine mammal oral microbiome. Curr. Biol. 27, 3752–3762.e3756 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e525 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article 

    Google Scholar 

  • Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Letunic, I., Khedkar, S. & Bork, P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 49, D458–D460 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Skennerton, C. T., Imelfort, M. & Tyson, G. W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 41, e105 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 8, 209 (2007).

    Article 

    Google Scholar 

  • Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Galiez, C., Siebert, M., Enault, F., Vincent, J. & Söding, J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33, 3113–3114 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://ui.adsabs.harvard.edu/abs/2013arXiv1303.3997L (2013).

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wessel, P. et al. The Generic Mapping Tools version 6. Geochem. Geophys. Geosystems 20, 5556–5564 (2019).

    Article 

    Google Scholar 

  • Tozer, B. et al. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth Space Sci. 6, 1847–1864 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Small eddies play a big role in feeding ocean microbes

    Scientists chart how exercise affects the body