Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
Google Scholar
Angly, F. E. et al. The marine viromes of four oceanic regions. PLOS Biol. 4, 2121–2131 (2006).
Google Scholar
Labonté, J. M. & Suttle, C. A. Previously unknown and highly divergent ssDNA viruses populate the oceans. ISME J. 7, 2169–2177 (2013).
Google Scholar
Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).
Google Scholar
Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).
Google Scholar
Allen, L. Z. et al. The Baltic sea virome: diversity and transcriptional activity of DNA and RNA viruses. mSystems 2, e00125–00116 (2017).
Google Scholar
Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).
Google Scholar
Hurwitz, B. L., Hallam, S. J. & Sullivan, M. B. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 14, R123 (2013).
Google Scholar
Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).
Google Scholar
Kim, J.-G. et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc. Natl Acad. Sci. USA 116, 15645–15650 (2019).
Google Scholar
Danovaro, R. et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087 (2008).
Google Scholar
Danovaro, R. et al. Viriobenthos in freshwater and marine sediments: a review. Freshw. Biol. 53, 1186–1213 (2008).
Google Scholar
Engelhardt, T., Kallmeyer, J., Cypionka, H. & Engelen, B. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 8, 1503–1509 (2014).
Google Scholar
Middelboe, M., Glud, R. N. & Filippini, M. Viral abundance and activity in the deep sub-seafloor biosphere. Aquat. Micro. Ecol. 63, 1–8 (2011).
Google Scholar
Li, Z. et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15, 2366–2378 (2021).
Google Scholar
Zheng, X. et al. Extraordinary diversity of viruses in deep-sea sediments as revealed by metagenomics without prior virion separation. Environ. Microbiol 23, 728–743 (2021).
Google Scholar
Helton, R. R., Liu, L. & Wommack, K. E. Assessment of factors influencing direct enumeration of viruses within estuarine sediments. Appl Environ. Microbiol 72, 4767–4774 (2006).
Google Scholar
Pan, D., Morono, Y., Inagaki, F. & Takai, K. An improved method for extracting viruses from sediment: detection of far more viruses in the subseafloor than previously reported. Front Microbiol 10, 878 (2019).
Google Scholar
Armanious, A. et al. Viruses at solid–water interfaces: a systematic assessment of interactions driving adsorption. Environ. Sci. Technol. 50, 732–743 (2016).
Google Scholar
Trubl, G. et al. Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient. PeerJ 4, e1999 (2016).
Google Scholar
Maat, D. S., Prins, M. A. & Brussaard, C. P. D. Sediments from arctic tide-water glaciers remove coastal marine viruses and delay host infection. Viruses 11, 123 (2019).
Google Scholar
Loveland, J. P., Ryan, J. N., Amy, G. L. & Harvey, R. W. The reversibility of virus attachment to mineral surfaces. Colloids Surf. A Physicochem. Eng. Asp. 107, 205–221 (1996).
Google Scholar
Fuhs, G. W., Chen, M., Sturman, L. S. & Moore, R. S. Virus adsorption to mineral surfaces is reduced by microbial overgrowth and organic coatings. Microb. Ecol. 11, 25–39 (1985).
Google Scholar
Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).
Google Scholar
Cai, L. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 13, 1857–1864 (2019).
Google Scholar
Manea, E. et al. Viral infections boost prokaryotic biomass production and organic C cycling in hadal trench sediments. Front Microbiol 10, 1952 (2019).
Google Scholar
Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv. 2, e1600492 (2016).
Google Scholar
Yoshida, M., Takaki, Y., Eitoku, M., Nunoura, T. & Takai, K. Metagenomic analysis of viral communities in (hado)pelagic sediments. PLoS One 8, e57271 (2013).
Google Scholar
Bäckström, D. et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10, e02497–02418 (2019).
Google Scholar
Jian, H. et al. Diversity and distribution of viruses inhabiting the deepest ocean on Earth. ISME J. 15, 3094–3110 (2021).
Google Scholar
Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014).
Google Scholar
Zhou, H. et al. Revealing the viral community in the hadal sediment of the New Britain Trench. Genes 12, 990 (2021).
Google Scholar
Dell’Anno, A., Corinaldesi, C. & Danovaro, R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc. Natl Acad. Sci. USA 112, E2014–E2019 (2015).
Google Scholar
Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).
Google Scholar
Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).
Google Scholar
Luo, M. et al. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption. Geophys. Res. Lett. 45, 2752–2760 (2018).
Google Scholar
Hiraoka, S. et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 14, 740–756 (2020).
Google Scholar
Cui, G., Li, J., Gao, Z. & Wang, Y. Spatial variations of microbial communities in abyssal and hadal sediments across the Challenger Deep. PeerJ 7, e6961 (2019).
Google Scholar
Zhou, Y.-L., Mara, P., Cui, G.-J., Edgcomb, V. P. & Wang, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Nat. Commun. 13, 1515 (2022).
Google Scholar
Marquet M., et al. What the Phage: a scalable workflow for the identification and analysis of phage sequences. bioRxiv https://www.biorxiv.org/content/10.1101/2020.07.24.219899v1 (2020).
Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).
Google Scholar
Gregory, A. C. et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics 17, 930 (2016).
Google Scholar
Bobay, L.-M. & Ochman, H. Biological species are universal across life’s domains. Genome Biol. Evol. 9, 491–501 (2017).
Google Scholar
Nayfach S., et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2020).
Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).
Google Scholar
Dalcin Martins, P. et al. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome 6, 138 (2018).
Google Scholar
Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).
Google Scholar
Zhao, J. et al. Novel viral communities potentially assisting in carbon, nitrogen, and sulfur metabolism in the upper slope sediments of Mariana Trench. mSystems 7, e01358–01321 (2022).
Google Scholar
Walker, P. J. et al. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch. Virol. 166, 2633–2648 (2021).
Google Scholar
Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).
Google Scholar
Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740 e728 (2020).
Google Scholar
Nishimura, Y. et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere 2, e00359–00316 (2017).
Google Scholar
Vik, D. R. et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ 5, e3428 (2017).
Google Scholar
Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).
Google Scholar
Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).
Google Scholar
Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience 49, 781–788 (1999).
Google Scholar
Peoples, L. M. et al. Microbial community diversity within sediments from two geographically separated hadal trenches. Front. Microbiol. 10, 347 (2019).
Google Scholar
Mara, P. et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 14, 3079–3092 (2020).
Google Scholar
Breitbart, M., Thompson, L. R., Suttle, C. A. & Sullivan, M. B. Exploring the vast diversity of marine viruses. Oceanography 20, 135–139 (2007).
Google Scholar
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
Google Scholar
Rubino, F. M. Toxicity of glutathione-binding metals: a review of targets and mechanisms. Toxics 3, 20–62 (2015).
Google Scholar
Jozefczak, M., Remans, T., Vangronsveld, J. & Cuypers, A. Glutathione is a key player in metal-induced oxidative stress defenses. Int J. Mol. Sci. 13, 3145–3175 (2012).
Google Scholar
Liu, M. et al. Methylmercury bioaccumulation in deepest ocean fauna: implications for ocean mercury biotransport through food webs. Environ. Sci. Technol. Lett. 7, 469–476 (2020).
Google Scholar
Welty, C. J., Sousa, M. L., Dunnivant, F. M. & Yancey, P. H. High-density element concentrations in fish from subtidal to hadal zones of the Pacific Ocean. Heliyon 4, e00840 (2018).
Google Scholar
Chen, P. et al. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol. 22, 207 (2021).
Google Scholar
Williams, A. H. & Raetz, C. R. H. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc. Natl Acad. Sci. USA 104, 13543–13550 (2007).
Google Scholar
Ahmad, S., Raza, S., Abro, A., Liedl, K. R. & Azam, S. S. Toward novel inhibitors against KdsB: a highly specific and selective broad-spectrum bacterial enzyme. J. Biomol. Struct. Dyn. 37, 1326–1345 (2019).
Google Scholar
Gronow, S., Brabetz, W. & Brade, H. Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli. Eur. J. Biochem. 267, 6602–6611 (2000).
Google Scholar
Abeyrathne, P. D., Daniels, C., Poon, K. K. H., Matewish, M. J. & Lam, J. S. Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa Lipopolysaccharide. J. Bacteriol. 187, 3002–3012 (2005).
Google Scholar
Kneidinger, B. et al. Biosynthesis pathway of ADP-l-glycero-β-manno-heptose in Escherichia coli. J. Bacteriol. 184, 363–369 (2002).
Google Scholar
Sullivan, M. B., Coleman, M. L., Weigele, P., Rohwer, F. & Chisholm, S. W. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. Plos Biol. 3, 790–806 (2005).
Google Scholar
Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).
Google Scholar
Auer, G. K. & Weibel, D. B. Bacterial cell mechanics. Biochemistry 56, 3710–3724 (2017).
Google Scholar
Castelán-Sánchez, H. G. et al. Extremophile deep-sea viral communities from hydrothermal vents: structural and functional analysis. Mar. Genomics 46, 16–28 (2019).
Google Scholar
Chothi, M. P. et al. Identification of an L-rhamnose synthetic pathway in two nucleocytoplasmic large DNA viruses. J. Virol. 84, 8829–8838 (2010).
Google Scholar
Bachy C., et al. Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. ISME J. 15, 3129–3147 (2021).
Zhang, W. et al. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes. Sci. Rep. 5, 15131 (2015).
Google Scholar
Clerissi, C. et al. Prasinovirus distribution in the Northwest Mediterranean Sea is affected by the environment and particularly by phosphate availability. Virology 466–467, 146–157 (2014).
Google Scholar
Mistou, M. Y., Sutcliffe, I. C. & van Sorge, N. M. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol. Rev. 40, 464–479 (2016).
Google Scholar
Wendlinger, G., Loessner, M. J. & Scherer, S. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142, 985–992 (1996).
Google Scholar
Michael, V. et al. Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ‘swim-or-stick’ lifestyle in roseobacters. ISME J. 10, 2498–2513 (2016).
Google Scholar
Chen, X., Weinbauer, M. G., Jiao, N. & Zhang, R. Revisiting marine lytic and lysogenic virus-host interactions: Kill-the-Winner and Piggyback-the-Winner. Sci. Bull. 66, 871–874 (2021).
Google Scholar
Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).
Google Scholar
Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).
Google Scholar
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Google Scholar
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
Google Scholar
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Google Scholar
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Google Scholar
Gao, Z.-M. et al. In situ meta-omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench. Environ. Microbiol. 21, 4092–4108 (2019).
Google Scholar
Pratama A. A., et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene. PeerJ 9, e11447 (2021).
Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet. 9, 304 (2018).
Google Scholar
Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 69 (2017).
Google Scholar
Fang Z., et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. GigaScience 8, giz066 (2019).
Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).
Google Scholar
Jurtz, V. I., Villarroel, J., Lund, O., Voldby Larsen, M. & Nielsen, M. MetaPhinder—identifying bacteriophage sequences in metagenomic data sets. PLoS One 11, e0163111 (2016).
Google Scholar
Ren, J. et al. Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8, 64–77 (2020).
Google Scholar
Abdelkareem A. O., Khalil M. I., Elaraby M., Abbas H. & Elbehery A. H. A. VirNet: deep attention model for viral reads identification. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES) (2018).
Starikova, E. V. et al. Phigaro: high-throughput prophage sequence annotation. Bioinformatics 36, 3882–3884 (2020).
Google Scholar
Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).
Google Scholar
Auslander, N., Gussow, A. B., Benler, S., Wolf, Y. I. & Koonin, E. V. Seeker: alignment-free identification of bacteriophage genomes by deep learning. Nucleic Acids Res. 48, e121–e121 (2020).
Google Scholar
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2018).
Google Scholar
Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12, 1673–1682 (2017).
Google Scholar
Gao, S.-M. et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome 8, 89 (2020).
Google Scholar
Dudek, N. K., Sun, C., Burstein, D., Kantor, R. & Relman, D. Novel microbial diversity and functional potential in the marine mammal oral microbiome. Curr. Biol. 27, 3752–3762.e3756 (2017).
Google Scholar
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
Google Scholar
Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e525 (2019).
Google Scholar
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
Google Scholar
Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Google Scholar
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Google Scholar
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
Google Scholar
Letunic, I., Khedkar, S. & Bork, P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 49, D458–D460 (2021).
Google Scholar
Skennerton, C. T., Imelfort, M. & Tyson, G. W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 41, e105 (2013).
Google Scholar
Bland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 8, 209 (2007).
Google Scholar
Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
Google Scholar
Galiez, C., Siebert, M., Enault, F., Vincent, J. & Söding, J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33, 3113–3114 (2017).
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://ui.adsabs.harvard.edu/abs/2013arXiv1303.3997L (2013).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Google Scholar
Wessel, P. et al. The Generic Mapping Tools version 6. Geochem. Geophys. Geosystems 20, 5556–5564 (2019).
Google Scholar
Tozer, B. et al. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth Space Sci. 6, 1847–1864 (2019).
Google Scholar
Source: Ecology - nature.com