in

Ecological niche modelling and climate change in two species groups of huntsman spider genus Eusparassus in the Western Palearctic

  • Foelix, R. F. Biology of Spiders (Oxford University Press, 2011).

    Google Scholar 

  • World Spider Catalog. World Spider Catalog, Version 23.0. Natural History Museum Bern, online at http://wsc.nmbe.ch (2022).

  • Nyffeler, M. & Sunderland, K. D. Composition, abundance and pest control potential of spider communities in agroecosystems: A comparison of European and US studies. Agric. Ecosyst. Environ. 95, 579–612 (2003).

    Google Scholar 

  • Oldrati, V. et al. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS ONE 12, e0172966 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Herzig, V. et al. Animal toxins—Nature’s evolutionary-refined toolkit for basic research and drug discovery. Biochem. Pharmacol. 181, 114096 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Moradmand, M. & Jäger, P. Taxonomic revision of the huntsman spider genus Eusparassus Simon, 1903 (Araneae: Sparassidae) in Eurasia. J. Nat. Hist. 46, 2439–2496 (2012).

    Google Scholar 

  • Moradmand, M. The stone huntsman spider genus Eusparassus (Araneae: Sparassidae): Systematics and zoogeography with revision of the African and Arabian species. Zootaxa 3675, 1–108 (2013).

    PubMed 

    Google Scholar 

  • Levy, G. The family of huntsman spiders in Israel with annotations on species of the Middle East (Araneae: Sparassidae). J. Zool. 217, 127–176 (1989).

    Google Scholar 

  • Dunlop, J. A. et al. Computed tomography recovers data from historical amber: An example from huntsman spiders. Naturwissenschaften 98, 519–527 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Moradmand, M., Schönhofer, A. L. & Jäger, P. Molecular phylogeny of the spider family Sparassidae with focus on the genus Eusparassus and notes on the RTA-clade and ‘Laterigradae’. Mol. Phylogenet. Evol. 74, 48–65 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Hutchinson, G. E. Cold spring harbor symposium on quantitative biology. Concl. Remarks 22, 415–427 (1957).

    Google Scholar 

  • Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).

    PubMed 

    Google Scholar 

  • Wake, D. B., Hadly, E. A. & Ackerlya, D. D. Biogeography, changing climates, and niche evolution. Proc. Natl. Acad. Sci. U. S. A. 106, 19631–19636 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).

    PubMed 

    Google Scholar 

  • Peñalver-Alcázar, M., Jiménez-Valverde, A. & Aragón, P. Niche differentiation between deeply divergent phylogenetic lineages of an endemic newt: implications for Species Distribution Models. Zoology 144, 125852 (2021).

    PubMed 

    Google Scholar 

  • Di Pasquale, G. et al. Coastal Pine-Oak Glacial Refugia in the mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 11, 673 (2020).

    Google Scholar 

  • Du, Z., He, Y., Wang, H., Wang, C. & Duan, Y. Potential geographical distribution and habitat shift of the genus Ammopiptanthus in China under current and future climate change based on the MaxEnt model. J. Arid Environ. 184, 104328 (2021).

    ADS 

    Google Scholar 

  • Kafash, A. et al. The Gray Toad-headed Agama, Phrynocephalus scutellatus, on the Iranian Plateau: The degree of niche overlap depends on the phylogenetic distance. Zool. Middle East 64, 47–54 (2018).

    Google Scholar 

  • Namyatova, A. A. Climatic niche comparison between closely related trans-Palearctic species of the genus Orthocephalus (Insecta: Heteroptera: Miridae: Orthotylinae). PeerJ 8, e10517 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. et al. Lineage-level distribution models lead to more realistic climate change predictions for a threatened crayfish. Divers. Distrib. 27, 684–695 (2021).

    Google Scholar 

  • Mammola, S. & Leroy, B. Applying species distribution models to caves and other subterranean habitats. Ecography (Cop.) 41, 1194–1208 (2018).

    Google Scholar 

  • Mammola, S. et al. Challenges and opportunities of species distribution modelling of terrestrial arthropod predators. Divers. Distrib. 00, 1–19 (2021).

    Google Scholar 

  • Saupe, E. E., Papes, M., Selden, P. A. & Vetter, R. S. Tracking a medically important spider: Climate change, ecological niche modeling, and the brown recluse (Loxosceles reclusa). PLoS ONE 6, 2 (2011).

    Google Scholar 

  • Planas, E., Saupe, E. E., Lima-Ribeiro, M. S., Peterson, A. T. & Ribera, C. Ecological niche and phylogeography elucidate complex biogeographic patterns in Loxosceles rufescens (Araneae, Sicariidae) in the Mediterranean Basin. BMC Evol. Biol. https://doi.org/10.1186/s12862-014-0195-y (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taucare-Ríos, A., Nentwig, W., Bizama, G. & Bustamante, R. O. Matching global and regional distribution models of the recluse spider Loxosceles rufescens: to what extent do these reflect niche conservatism?. Med. Vet. Entomol. 32, 490–496 (2018).

    PubMed 

    Google Scholar 

  • Wang, Y., Casajus, N., Buddle, C., Berteaux, D. & Larrivée, M. Predicting the distribution of poorly-documented species, Northern black widow (Latrodectus variolus) and Black purse-web spider (Sphodros Niger), using museum specimens and citizen science data. PLoS ONE 13, e0201094 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiménez-Valverde, A., Decae, A. E. & Arnedo, M. A. Environmental suitability of new reported localities of the funnelweb spider Macrothele calpeiana: An assessment using potential distribution modelling with presence-only techniques. J. Biogeogr. 38, 1213–1223 (2011).

    Google Scholar 

  • Monsimet, J., Devineau, O., Pétillon, J. & Lafage, D. Explicit integration of dispersal-related metrics improves predictions of SDM in predatory arthropods. Sci. Rep. https://doi.org/10.1038/s41598-020-73262-2 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salgado-Roa, F. C., Gamez, A., Sanchez-Herrera, M., Pardo-Diaz, C. & Salazar, C. Divergence promoted by the northern Andes in the giant fishing spider Ancylometes bogotensis (Araneae: Ctenidae). Biol. J. Linn. Soc. 132, 495–508 (2021).

    Google Scholar 

  • Mammola, S., Goodacre, S. L. & Isaia, M. Climate change may drive cave spiders to extinction. Ecography (Cop.) 41, 233–243 (2018).

    Google Scholar 

  • Ferretti, N. E., Soresi, D. S., González, A. & Arnedo, M. An integrative approach unveils speciation within the threatened spider Calathotarsus simoni (Araneae: Mygalomorphae: Migidae). Syst. Biodivers. 17, 439–457 (2019).

    Google Scholar 

  • Pavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133 (2021).

    Google Scholar 

  • Bosso, L. et al. Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpina (Coleoptera: Cerambycidae): evidence from species distribution models and conservation gap analysis. Ecol. Entomol. 43, 192–203 (2018).

    Google Scholar 

  • Kafash, A. et al. Climate change produces winners and losers: Differential responses of amphibians in mountain forests of the Near East. Glob. Ecol. Conserv. 16, e00471 (2018).

    Google Scholar 

  • Vásquez-Aguilar, A. A., Ornelas, J. F., Rodríguez-Gómez, F. & Cristina MacSwiney, G. Modeling future potential distribution of buff-bellied hummingbird (Amazilia yucatanensis) under climate change: species vs subspecies. Trop. Conserv. Sci. 25, 2 (2021).

    Google Scholar 

  • Rosauer, D. F., Catullo, R. A., VanDerWal, J., Moussalli, A. & Moritz, C. Lineage range estimation method reveals fine-scale endemism linked to pleistocene stability in Australian rainforest herpetofauna. PLoS ONE 10, e0126274 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eyres, A., Eronen, J. T., Hagen, O., Böhning-Gaese, K. & Fritz, S. A. Climatic effects on niche evolution in a passerine bird clade depend on paleoclimate reconstruction method. Evolution 75, 1046–1060 (2021).

    PubMed 

    Google Scholar 

  • Loyola, R. D., Lemes, P., Brum, F. T., Provete, D. B. & Duarte, L. D. S. Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography (Cop.) 37, 65–72 (2014).

    Google Scholar 

  • Muñoz, M. M. & Bodensteiner, B. L. Janzen’s hypothesis meets the bogert effect: Connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Org. Biol. 1, 1–12 (2019).

    Google Scholar 

  • Entling, W., Schmidt, M. H., Bacher, S., Brandl, R. & Nentwig, W. Niche properties of Central European spiders: Shading, moisture and the evolution of the habitat niche. Glob. Ecol. Biogeogr. 16, 440–448 (2007).

    Google Scholar 

  • Lafage, D., Maugenest, S., Bouzillé, J. B. & Pétillon, J. Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecol. Res. 30, 1025–1035 (2015).

    Google Scholar 

  • Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Wellenreuther, M., Larson, K. W. & Svensson, E. I. Climatic niche divergence or conservatism? Environmental niches and range limits in ecologically similar damselflies. Ecology 93, 1353–1366 (2012).

    PubMed 

    Google Scholar 

  • Nosil, P. & Sandoval, C. P. Ecological niche dimensionality and the evolutionary diversification of stick insects. PLoS ONE 3, e1907 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCormack, J. E., Zellmer, A. J. & Knowles, L. L. Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: Insights from tests with niche models. Evolution 64, 1231–1244 (2010).

    PubMed 

    Google Scholar 

  • Goudarzi, F., Hemami, M. R., Malekian, M. & Fakheran-Esfahani, S. Ecological Characterization of the breeding habitat of Luristan newt (Neurergus kaiseri) at local scale. J. Nat. Environ. 72, 113–127 (2019).

    Google Scholar 

  • Chase, J. M. & Leibold, M. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).

    Google Scholar 

  • Bonte, D., Vandenbroecke, N., Lens, L. & Maelfait, J. P. Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc. R. Soc. B Biol. Sci. 270, 1601–1607 (2003).

    Google Scholar 

  • GBIF.org. GBIF Occurrence Download. https://doi.org/10.15468/dl.2tc2ja (2021) doi:https://doi.org/10.15468/dl.2tc2ja.

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-Filled SRTM for the Globe Version 4. Available from the CGIAR-CSI SRTM 90m Database. (2008) doi:https ://srtm.csi.cgiar .org.

  • Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3, 3–7 (2020).

    Google Scholar 

  • Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models: With applications in R. (2017). doi:10.1017/ 9781139028271.

  • Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).

    Google Scholar 

  • Naimi, B. Uncertainty Analysis for Species Distribution Models. R package version (2015).

  • Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2022–2–12.

  • Nǎpǎruş, M. & Kuntner, M. A GIS model predicting potential distributions of a lineage: a test case on hermit spiders (Nephilidae: Nephilengys). PLoS ONE 7, e30047 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Google Scholar 

  • Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography (Cop.) 36, 1058–1069 (2013).

    Google Scholar 

  • Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Schoener, T. W. The anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).

    Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).

    PubMed 

    Google Scholar 

  • Warren, D. L. et al. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44, 504–511 (2021).

    Google Scholar 

  • Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop.) 28, 385–393 (2005).

    Google Scholar 

  • Vale, C. G., Tarroso, P. & Brito, J. C. Predicting species distribution at range margins: Testing the effects of study area extent, resolution and threshold selection in the Sahara-Sahel transition zone. Divers. Distrib. 20, 20–33 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Using nature’s structures in wooden buildings