in

Ecological resilience of restored peatlands to climate change

  • Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, 13 (2010).

    Google Scholar 

  • Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).

    CAS 
    Article 

    Google Scholar 

  • Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    CAS 
    Article 

    Google Scholar 

  • Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

    CAS 

    Google Scholar 

  • Bonn, A. et al. Investing in nature: Developing ecosystem service markets for peatland restoration. Ecosyst. Serv. 9, 54–65 (2014).

    Article 

    Google Scholar 

  • Martin-Ortega, J., Allott, T. E., Glenk, K. & Schaafsma, M. Valuing water quality improvements from peatland restoration: evidence and challenges. Ecosyst. Serv. 9, 34–43 (2014).

    Article 

    Google Scholar 

  • Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 11, 70–77 (2021).

    Article 

    Google Scholar 

  • Chimner, R. A., Cooper, D. J., Wurster, F. C. & Rochefort, L. An overview of peatland restoration in North America: where are we after 25 years? Restor. Ecol. 25, 283–292 (2017).

    Article 

    Google Scholar 

  • Andersen, R. et al. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 25, 271–282 (2017).

    Article 

    Google Scholar 

  • Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).

    Article 

    Google Scholar 

  • Humpenöder, F. et al. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 15, 104093 (2020).

    Article 

    Google Scholar 

  • Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, https://doi.org/10.1126/sciadv.abd6034 (2020).

  • Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1–7 (2018).

    CAS 
    Article 

    Google Scholar 

  • Gunderson, L. H. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).

    Article 

    Google Scholar 

  • Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 57, 395–408 (2015).

    Article 

    Google Scholar 

  • Scheffer, M. Critical transitions in nature and society (Princeton University, 2009).

  • Alexandrov, G. A., Brovkin, V. A., Kleinen, T. & Yu, Z. The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences 17, 47–54 (2020).

    CAS 
    Article 

    Google Scholar 

  • Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).

    Article 

    Google Scholar 

  • Rydin, H., Jeglum, J. K. & Bennett, K. D. The biology of peatlands, 2nd edition (Oxford University Press, 2013).

  • Kim, J. et al. Water table fluctuation in peatlands facilitates fungal proliferation, impedes Sphagnum growth and accelerates decomposition. Front. Earth Sci. 8, 717 (2021).

    Google Scholar 

  • IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability (Cambridge University Press, In Press).

  • Belyea, L. R. Non-linear dynamics of peatlands and potential feedbackson the climate system, in Northern Peatlands and Carbon Cycling (A, Baird. et al. eds), pp 5–18 (American Geophysical Union Monograph Series, 2009).

  • Holden, J. et al. Overland flow velocity and roughness properties in peatlands. Water Resour. Res. 44, https://doi.org/10.1029/2007WR006052 (2008).

  • Holden, J., Wallage, Z. E., Lane, S. N. & McDonald, A. T. Water table dynamics in undisturbed, drained and restored blanket peat. J. Hydrol. 402, 103–114 (2011).

    Article 

    Google Scholar 

  • Glaser, P. H. et al. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Glob. Biogeochem. Cycles 18, GB1003 (2004).

    Article 
    CAS 

    Google Scholar 

  • Belyea, L. R. & Baird, A. J. Beyond “the limits to peat bog growth”: cross‐scale feedback in peatland development. Ecol. Monogr. 76, 299–322 (2006).

    Article 

    Google Scholar 

  • Waddington, J. M. et al. Hydrological feedbacks in northern peatlands. Ecohydrology 8, 113–127 (2015).

    Article 

    Google Scholar 

  • Holden, J., Evans, M. G., Burt, T. P. & Horton, M. Impact of land drainage on peatland hydrology. J. Environ. Qual. 35, 1764–1778 (2006).

    CAS 
    Article 

    Google Scholar 

  • Liu, H. & Lennartz, B. Hydraulic properties of peat soils along a bulk density gradient—a meta study. Hydrol. Process. 33, 101–114 (2019).

    Article 

    Google Scholar 

  • Gałka, M., Tobolski, K., Górska, A. & Lamentowicz, M. Resilience of plant and testate amoeba communities after climatic and anthropogenic disturbances in a Baltic bog in Northern Poland: implications for ecological restoration. Holocene 27, 130–141 (2017).

    Article 

    Google Scholar 

  • Lamentowicz, M. et al. Unveiling tipping points in long-term ecological records from Sphagnum-dominated peatlands. Biol. Lett. 15, https://doi.org/10.1098/rsbl.2019.0043 (2019).

  • van der Velde, Y. Emerging forest-peatland bistability and resilience of European peatland carbon stores. Proc. Natl Acad. Sci. 118, https://doi.org/10.1073/pnas.210174211 (2021).

  • Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    CAS 
    Article 

    Google Scholar 

  • Minayeva, T. Y. & Sirin, A. A. Peatland biodiversity and climate change. Biol. Bull. Rev. 2, 164–175 (2012).

    Article 

    Google Scholar 

  • Minayeva, T. Y., Bragg, O. & Sirin, A. A. Towards ecosystem-based restoration of peatland biodiversity. Mires Peat 19, 1–36 (2017).

    Google Scholar 

  • Andersen, R., Chapman, S. J. & Artz, R. R. Microbial communities in natural and disturbed peatlands: a review. Soil Biol. Biochem. 1, 979–994 (2013).

    Article 
    CAS 

    Google Scholar 

  • van Breemen, N. How Sphagnum bogs down other plants. Trends Ecol. Evol. 10, 270–275 (1995).

    Article 

    Google Scholar 

  • Hugron, S. & Rochefort, L. Sphagnum mosses cultivated in outdoor nurseries yield efficient plant material for peatland restoration. Mires Peat 20, 1–6 (2018).

    Google Scholar 

  • Vitt, D. H. Peatlands: ecosystems dominated by bryophytes. In: Shaw A. J. & Goffinet B. (eds) Bryophyte biology, pp 312–343 (Cambridge University Press, 2002).

  • Yu, Z. et al. Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. Holocene 13, 801–808 (2003).

    Article 

    Google Scholar 

  • Chiapusio, G. et al. Sphagnum species module their phenolic profiles and mycorrhizal colonization of surrounding Andromeda polifolia along peatland microhabitats. J. Chem. Ecol. 44, 1146–1157 (2018).

    CAS 
    Article 

    Google Scholar 

  • Sherwood, J. H. et al. Effect of drainage and wildfire on peat hydrophysical properties. Hydrol. Process. 27, 1866–1874 (2013).

    Article 

    Google Scholar 

  • Tanneberger, F., Flade, M., Preiksa, Z. & Schröder, B. Habitat selection of the globally threatened aquatic warbler Acrocephalus paludicola at the western margin of its breeding range and implications for management. Ibis 152, 347–358 (2010).

    Article 

    Google Scholar 

  • Kreyling, J. Rewetting does not return drained fen peatlands to their old selves. Nat. Commun. 12, 1–8 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ritson, J. P. et al. Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning–a research agenda. Sci. Total Environ. 759, https://doi.org/10.1016/j.scitotenv.2020.143467 (2021).

  • Secco, E. D., Haapalehto, T., Haimi, J., Meissner, K. & Tahvanainen, T. Do testate amoebae communities recover in concordance with vegetation after restoration of drained peatlands? Mires Peat 18, https://doi.org/10.19189/MaP.2016.OMB.231 (2016).

  • Basiliko, N. et al. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands. Front. Microbiol. 31, https://doi.org/10.3389/fmicb.2013.00215 (2013).

  • Barber, K. E. Peat stratigraphy and climatic change. vol 219, (AA Balkema, 1981).

  • Quinton, W. L. & Roulet, N. T. Spring and summer runoff hydrology of a subarctic patterned wetland. Arctic Alpine Res. 30, 285–294 (1998).

    Article 

    Google Scholar 

  • Eppinga, M. B., Rietkerk, M., Wassen, M. J. & De Ruiter, P. C. Linking habitat modification to catastrophic shifts and vegetation patterns in bogs. Plant Ecol. 200, 53–68 (2009).

    Article 

    Google Scholar 

  • Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R. D. Biogeochemical plant– soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change 3, 273–277 (2013).

    CAS 
    Article 

    Google Scholar 

  • Fenton, N. J. Applied ecology in Canada’s boreal: a holistic view of the mitigation hierarchy and resilience theory. Botany 94, 1009–1014 (2016).

    Article 

    Google Scholar 

  • Xu, L. X. et al. Maintain spatial heterogeneity, maintain biodiversity—a seed bank study in a grazed alpine fen meadow. Land Degrad. Dev. 28, 1376–1385 (2017).

    Article 

    Google Scholar 

  • Laine, J., Vasander, H. & Laiho, R. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J. Appl. Ecol. 1, 785–802 (1995).

    Google Scholar 

  • Gatis, N. et al. The effect of drainage ditches on vegetation diversity and CO2 fluxes in a Molinia caerulea‐dominated peatland. Ecohydrology 9, 407–420 (2016).

    CAS 
    Article 

    Google Scholar 

  • Swindles, G. T. et al. Resilience of peatland ecosystem services over millennial timescales: evidence from a degraded British bog. Journal of Ecology 104, 621–636 (2016).

    Article 

    Google Scholar 

  • Liu, H., Gao, C. & Wang, G. Understand the resilience and regime shift of the wetland ecosystem after human disturbances. Sci. Total Environ. 643, 1031–1040 (2018).

    CAS 
    Article 

    Google Scholar 

  • Couwenberg, J. et al. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674, 67–89 (2011).

    CAS 
    Article 

    Google Scholar 

  • Tiemeyer, B. et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Change Biol. 22, 4134–4149 (2016).

    Article 

    Google Scholar 

  • Strack, M. et al. Controls on plot-scale growing season CO2 and CH4 fluxes in restored peatlands: do they differ from unrestored and natural sites? Mires Peat 17, 1–18 (2016).

    Google Scholar 

  • Nugent, K. A., Strachan, I. B., Strack, M., Roulet, N. T. & Rochefort, L. Multi-year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Global Change Biol. 24, 5751–5768 (2018).

    Article 

    Google Scholar 

  • Hambley, G. et al. Net ecosystem exchange from two formerly afforested peatlands undergoing restoration in the Flow Country of northern Scotland. Mires Peat 23, https://doi.org/10.19189/MaP.2018.DW.346 (2019).

  • Schwieger, S. et al. Wetter is better: rewetting of minerotrophic peatlands increases plant production and moves them towards carbon sinks in a dry year. Ecosystems 24, 1093–1109 (2021).

    CAS 
    Article 

    Google Scholar 

  • Poulin, M., Andersen, R. & Rochefort, L. A new approach for tracking vegetation change after restoration: a case study with peatlands. Restor. Ecol. 21, 363–371 (2013).

    Article 

    Google Scholar 

  • Gonzalez, E. & Rochefort, L. Drivers of success in 53 cutover bogs restored by a moss layer transfer technique. Ecol. Eng. 68, 279–290 (2014).

    Article 

    Google Scholar 

  • Karofeld, E., Müür, M. & Vellak, K. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia. Environ. Sci. Pollut. Res. 23, 13706–13717 (2016).

    Article 

    Google Scholar 

  • Karofeld, E., Kaasik, A. & Vellak, K. Growth characteristics of three Sphagnum species in restored extracted peatland. Restor. Ecol. 28, 1574–1583 (2020).

    Article 

    Google Scholar 

  • Purre, A. H., Ilomets, M., Truus, L., Pajula, R. & Sepp, K. The effect of different treatments of moss layer transfer technique on plant functional types biomass in revegetated milled peatlands. Restor. Ecol. 28, 1584–1595 (2020).

    Article 

    Google Scholar 

  • Beyer, F. et al. Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO2 sink function. Biogeosciences 18, 917–935 (2021).

    CAS 
    Article 

    Google Scholar 

  • Ketcheson, S. J. & Price, J. S. The impact of peatland restoration on the site hydrology of an abandoned block-cut bog. Wetlands 31, 1263–1274 (2011).

    Article 

    Google Scholar 

  • McCarter, C. P. R. & Price, J. S. The hydrology of the Bois-des-Bel bog peatland restoration: 10 years post-restoration. Ecol. Eng. 55, 73–81 (2013).

    Article 

    Google Scholar 

  • Koebsch, F. et al. The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Philos. Transac. R. Soc. B 375, https://doi.org/10.1098/rstb.2019.0685 (2020).

  • Blier‐Langdeau, A., Guêné‐Nanchen, M., Hugron, S. & Rochefort, L. The resistance and short‐term resilience of a restored extracted peatland ecosystems post‐fire: an opportunistic study after a wildfire. Restor. Ecol. 30, https://doi.org/10.1111/rec.13545 (2022).

  • Rochefort, L., Quinty, F., Campeau, S., Johnson, K. & Malterer, T. North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecol. Manage. 11, 3–20 (2003).

    CAS 
    Article 

    Google Scholar 

  • Lavoie, C., St-Louis, A. & Lachance, D. Vegetation dynamics on an abandoned vacuum-mined peatland: Five years of monitoring. Wetlands Ecol. Manage. 13, 621–633 (2005).

    Article 

    Google Scholar 

  • Poulin, M., Rochefort, L., Quinty, F. & Lavoie, C. Spontaneous revegetation of mined peatlands in eastern Canada. Can. J. Botany 83, 539–557 (2005).

    Article 

    Google Scholar 

  • Quinty, F., LeBlanc, M.-C. & Rochefort, L. Peatland Restoration Guide—PERG, CSPMA and APTHQ (Université Laval, 2020).

  • Wagner, D. J. & Titus, J. E. Comparative desiccation tolerance of two Sphagnum mosses. Oecologia 62, 182–187 (1984).

    Article 

    Google Scholar 

  • Gonzalez, E. & Rochefort, L. Declaring success in Sphagnum peatland restoration: identifying outcomes from readily measurable vegetation descriptors. Mires Peat 24, 1–16 (2019).

    Google Scholar 

  • Scotland National Peatland Plan. Working for our future. https://www.nature.scot/doc/scotlands-national-peatland-plan-working-our-future#:~:text=The%202020%20Challenge%20for%20Scotland’s,more%20resilient%20to%20climate%20change (2020).

  • Wilkie, N. M. & Mayhew, P. W. The management and restoration of damaged blanket bog in the north of Scotland. Bot. J. Scotl. 55, 125–133 (2003).

    Article 

    Google Scholar 

  • Hancock, M. H., Klein, D., Andersen, R. & Cowie, N. R. Vegetation response to restoration management of a blanket bog damaged by drainage and afforestation. Appl. Veg. Sci. 21, 167–178 (2018).

    Article 

    Google Scholar 

  • Harris, A. & Baird, A. J. Microtopographic drivers of vegetation patterning in blanket peatlands recovering from erosion. Ecosystems 22, 1035–1054 (2019).

    Article 

    Google Scholar 

  • Bradley, A. V., Andersen, R., Marshall, C., Sowter, A. & Large, D. J. Identification of typical ecohydrological behaviours using InSAR allows landscape-scale mapping of peatland condition. Earth Surf. Dyn. 10, 261–277 (2022).

    Article 

    Google Scholar 

  • Gaffney, P. P., Hancock, M. H., Taggart, M. A. & Andersen, R. Measuring restoration progress using pore-and surface-water chemistry across a chronosequence of formerly afforested blanket bogs. J. Environ. Manage. 219, 239–251 (2018).

    CAS 
    Article 

    Google Scholar 

  • Hermans, R. et al. Climate benefits of forest-to-bog restoration on deep peat–Policy briefing. Climate X Change 1–5, https://www.climatexchange.org.uk/media/3654/climate-benefits-of-forest-to-bog-restoration-on-deep-peat.pdf (2019).

  • Wilson, D. et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 17, 1–28 (2016).

    Google Scholar 

  • Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1–5 (2020).

    Article 
    CAS 

    Google Scholar 

  • Young, D. M. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci. Rep. 9, 1–8 (2019).

    Article 
    CAS 

    Google Scholar 

  • Young, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).

    CAS 
    Article 

    Google Scholar 

  • Klimkowska, A. et al. Are we restoring functional fens? The outcomes of restoration projects in fens re-analysed with plant functional traits. PLoS One 14, https://doi.org/10.1371/journal.pone.0215645 (2019).

  • Huth, V. et al. The climate benefits of topsoil removal and Sphagnum introduction in raised bog restoration. Restor. Ecol. 30, https://doi.org/10.1111/rec.13490 (2022).

  • Schimelpfenig, D., Cooper, D. J. & Chimner, R. A. Effectiveness of ditch blockage for restoring hydrologic and soil processes in mountain peatlands. Restor. Ecol. 22, 257–265 (2014).

    Article 

    Google Scholar 

  • Laine, A. M., Tolvanen, A., Mehtätalo, L. & Tuittila, E. S. Vegetation structure and photosynthesis respond rapidly to restoration in young coastal fens. Ecol. Evol. 6, 6880–6891 (2016).

    Article 

    Google Scholar 

  • Gallego-Sala, A. V. & Prentice, I. C. Blanket peat biome endangered by climate change. Nat. Clim. Change 3, 152–155 (2013).

    Article 

    Google Scholar 

  • Schneider, R. R., Devito, K., Kettridge, N. & Bayne, E. Moving beyond bioclimatic envelope models:50 integrating upland forest and peatland processes to predict ecosystem transitions under climate change in the51 western Canadian boreal plain: Western boreal ecosystem transitions under climate change. Ecohydrology 9, 899–908 (2016).

    Article 

    Google Scholar 

  • Blundell, A. & Holden, J. Using palaeoecology to support blanket peatland management. Ecol. Indic. 49, 110–120 (2005).

    Article 

    Google Scholar 

  • Newman, S. et al. Drivers of landscape evolution: multiple regimes and their influence on carbon sequestration in a sub‐tropical peatland. Ecol. Monogr. 87, 578–599 (2017).

    Article 

    Google Scholar 

  • Wilkinson, S. L., Moore, P. A., Flannigan, M. D., Wotton, B. M. & Waddington, J. M. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environ. Res. Lett. 13, https://doi.org/10.1088/1748-9326/aaa136 (2018).

  • Hokanson, K. J. et al. A hydrogeological landscape framework to identify peatland wildfire smouldering hot spots. Ecohydrology 11, https://doi.org/10.1002/eco.1942 (2018).

  • IPCC. Global warming of 1.5 °C (IPCC, 2018).

  • Glenk, K., Faccioli, M., Martin-Ortega, J., Schulze, C. & Potts, J. The opportunity cost of delaying climate action: Peatland restoration and resilience to climate change. Glob. Environ. Change 70, https://doi.org/10.1016/j.gloenvcha.2021.102323 (2021).

  • Tanneberger, F. et al. The power of nature‐based solutions: how peatlands can help us to achieve key EU sustainability objectives. Adv. Sustain. Syst. 5, https://doi.org/10.1002/adsu.202000146 (2021).

  • Loisel, J. & Walenta, J. Carbon parks could secure essential ecosystems for climate stabilization. Nat. Ecol. Evol. 6, 486–488 (2022).

    Article 

    Google Scholar 

  • Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).

  • Terzano, D. Community‐led peatland restoration in Southeast Asia: 5Rs approach. Restor. Ecol. 3, https://doi.org/10.1111/rec.13642 (2022).


  • Source: Ecology - nature.com

    MIT accelerates efforts on path to carbon reduction goals

    SMART Innovation Center awarded five-year NRF grant for new deep tech ventures